\(^{1^2}\)+<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

A = 1.2 + 2.3 +... + 100.101

3A  = 1.2.3 + 2.3.3+ ... + 100.101.3

      = 1.2.3+ 2.3.( 4-1) + 3.4(5-2) +...+ 100 .101(102-99)

      = 100 . 101 . 102

A = \(\frac{100.101.102}{3}\)= 343400 

29 tháng 9 2017

B = 1.3 + 2.4 + 3.5 + ... +  77.99

   = 1(2+1) + 2(3+1) + 3(4+1) +...+ 77(98+1)

   = 1.2 + 1 + 2.3 + 2 + 3.4 + 3 + ... + 77 .98 + 77

   = (1.2 + 2.3 + 3.4 + ... + 77.78) + ( 1 + 2 + 3 + ...+ 77)

   = \(\frac{77.78.79}{3}+\frac{77+\left(77+1\right)}{2}\)

   =  158158 + 3003

   = 161161

24 tháng 3 2017

a,\(\frac{1.1.2.2.3.3....99.99.100.100}{1.2.2.3.3.4...99.100.100.101}\)=\(\frac{\left(1.2.3...99.100\right)\left(1.2.3...99.100\right)}{\left(1.2.3.4...99.100\right)\left(2.3.4...100.101\right)}\)=\(\frac{1.1}{101}\)=\(\frac{1}{101}\). ý b làm tương tự nha

2 tháng 3 2018

tao dóe biet

2 tháng 3 2018

a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101

= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101

=( 2.3.4....100/2.3.4...100) . 1/101

= 1 . 1/101

=1/101

ý b tương tự nhé !

31 tháng 3 2020

Bg

a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)

\(=\frac{1^2}{101}\)

\(=\frac{1}{101}\)

Ghi chú: \(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)--> 22 chịt tiêu 2.2 (trên và dưới) làm thế này mãi đến khi còn \(\frac{1^2}{101}\).

b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)

=\(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)

\(\frac{2}{1}.\frac{59}{60}\)

\(\frac{59}{30}\)

Ghi chú: \(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)--> chịt tiêu liên tục, còn \(\frac{2}{1}.\frac{59}{60}\).

29 tháng 6 2020

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)

C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)

29 tháng 6 2020

Bài làm:

1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)

3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)

18 tháng 6 2017

bạn phải cho ra 2 số cuối thì mới làm đc nha có 1 s
ố cuối ko làm đc đâu 

18 tháng 6 2017

A= 1-1/2 + 1-1/3 + 1/2-1/5 + 1/3-1/8+ 1/5-1/13+1/8- 1/21 +....+ 1/610- 1/1597

A= 1/610

13 tháng 2 2020

c) \(C=1.2+2.3+3.4+...+98.99\)

\(\Rightarrow3C=1.2\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+...+98.99\left(100-97\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)

\(=98.99.100\)

\(\Rightarrow C=\frac{98.99.100}{3}=323400\)

d) \(D=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

24 tháng 3 2018

*\(\frac{x}{200}\)=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\)....\(\frac{99^2}{99.100}\)

=>\(\frac{x}{200}\)=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{99}{100}\)

=>\(\frac{x}{200}\)=\(\frac{1}{100}\)

=>100x=200

=>x=2