\(\frac{1}{2}\)+  \(\frac{1}{6}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)

\(A=1-\frac{1}{21}\)

\(A=\frac{20}{21}\)

11 tháng 7 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\)

\(A=1-\frac{1}{21}\)

\(A=\frac{20}{21}\)

26 tháng 7 2020

a) Ta có\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)=1-\frac{2}{11}=\frac{9}{11}\)

b) Ta có \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2048}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)(1)

Đặt S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\)

=> \(2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)

Lấy 2S trừ S ta có :

2S - S \(=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\right)\)

\(S=1-\frac{1}{2048}\)

Khi đó (1) <=> \(1-\left(1-\frac{1}{2048}\right)=1-1+\frac{1}{2048}=\frac{1}{2048}\)

26 tháng 7 2020

\(a,\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+....+\frac{2}{90}+\frac{2}{110}\)

\(=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+.....+\frac{1}{90}+\frac{1}{110}\right)\)

\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}+\frac{1}{10.11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)

\(=1-\frac{2}{11}\)

\(=\frac{9}{11}\)

6 tháng 8 2019

a,\(\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x};Đkxđ:x\ne1\)

\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}\left(\frac{-9}{20}\right)=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}-\frac{5}{2-2x}=\frac{-3}{10}\)

\(\Rightarrow\frac{1}{x-1}-\frac{5}{-2\left(x-1\right)}=\frac{-3}{10}\)

\(\Rightarrow\frac{1}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{3}{10}\)

\(\Rightarrow\frac{7}{2\left(x-1\right)}=\frac{-3}{10}\)

\(\Rightarrow70=-6\left(x-1\right)\)

\(\Rightarrow6x=6-70\)

\(\Rightarrow6x=-64\)

\(\Rightarrow x=\frac{-32}{3}x\ne1\)

1 tháng 8 2020

\(\left(2\right)K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(K=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(K=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\left(3\right)L=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{100\cdot103}\)

\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{510}{309}=\frac{170}{103}\)

1 tháng 8 2020

Trả lời:

2,\(K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(K=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(K=\frac{1}{2}-\frac{1}{100}\)

\(K=\frac{49}{100}\)

3,\(L=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(L=\frac{5}{3}\times\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(L=\frac{5}{3}\times\frac{102}{103}\)

\(L=\frac{170}{103}\)

Học tốt 

10 tháng 4 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}=\frac{10}{11}\)

10 tháng 4 2019

Đặt\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}...+\frac{1}{110}\)

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{10.11}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)

\(S=1-\frac{1}{11}\)

\(S=\frac{11}{11}-\frac{1}{11}=\frac{10}{11}\)

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)

10 tháng 6 2020

*)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

=\(1-\frac{1}{6}\)

=\(\frac{6}{6}-\frac{1}{6}\)

\(=\frac{5}{6}\)

*)\(\frac{2003}{1.2}+\frac{2003}{2.3}+\frac{2003}{3.4}+...+\frac{2003}{2002.2003}\)

\(=\frac{2003}{1}-\frac{2003}{2}+\frac{2003}{2}-\frac{2003}{3}+\frac{2003}{3}-\frac{2003}{4}+...+\frac{2003}{2002}-\frac{2003}{2003}\)

\(=2003-1\)

\(=2002\)

10 tháng 6 2020

Thanks bạn nha (Tuy thiếu câu 2)

25 tháng 4 2017

Ta có:

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{870}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{29.30}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....+\frac{1}{29}-\frac{1}{30}\)

\(=\frac{1}{2}-\frac{1}{30}=\frac{15}{30}-\frac{1}{30}=\frac{14}{30}=\frac{7}{15}\)

Vậy \(A=\frac{7}{15}\)

25 tháng 4 2017

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{870}\)

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{29.30}\)

\(A=\frac{1}{2}-\frac{1}{30}\)

\(A=\frac{7}{15}\)