Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{7}{12}\cdot\frac{6}{11}+\frac{7}{12}\cdot\frac{5}{11}+2\frac{7}{12}\)
\(=\frac{7}{12}\cdot\left(\frac{6}{11}+\frac{5}{11}\right)+2\frac{7}{12}\)
\(=\frac{7}{12}+\frac{31}{12}\)
\(=\frac{38}{12}=\frac{19}{6}\)
\(b,\frac{-5}{9}\cdot\frac{-6}{13}+\frac{5}{-9}\cdot\frac{-5}{13}-\frac{5}{9}\)
\(=\frac{-5}{9}\cdot\frac{-6}{13}+\frac{-5}{9}\cdot\frac{-5}{13}+\frac{-5}{9}\cdot1\)
\(=\frac{-5}{9}\cdot\left(\frac{-6}{13}+\frac{-5}{13}+1\right)\)
\(=\frac{-5}{9}\cdot\left(\frac{-11}{13}+1\right)\)
\(=\frac{-5}{9}\cdot\frac{2}{13}\)
\(=\frac{-10}{117}\)
\(c,\)\(0,8\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-1\frac{2}{5}\)
\(=\frac{4}{5}\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-\frac{7}{5}\)
\(=\frac{4}{5}\cdot\left(\frac{-15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)
\(=\frac{4}{5}\cdot\left(-2\right)-\frac{7}{5}\)
\(=\frac{-8}{5}-\frac{7}{5}\)
\(=-3\)
\(d,\)\(75\%\cdot\frac{6}{7}+5\%\cdot\frac{6}{7}+\frac{7}{10}\cdot1\frac{1}{7}\)
\(=\frac{3}{4}\cdot\frac{6}{7}+\frac{1}{20}\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)
\(=\left(\frac{3}{4}+\frac{1}{20}\right)\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)
\(=\frac{4}{5}\cdot\frac{6}{7}+\frac{4}{5}\cdot1\)
\(=\frac{4}{5}\cdot\left(\frac{6}{7}+1\right)\)
\(=\frac{4}{5}\cdot\frac{13}{7}\)
\(=\frac{52}{35}\)
a)7/12.6/11+7/12.5/11-2.7/12
=7/12(6/11+5/11-2)
=7/12(1-2)
=7/12.(-1)
=-7/12
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
a . 7/12 . 6/11 + 7/12 . 5/11 - 2 7/12
= 7/12 . ( 6/11 + 5/11 ) - 31/12
= 7/12 . 1 - 31/12
= 7/12 - 31/12
= -2
b . -5/9 . -6/13 + 5/-9 . -5/13 - 5/9
= -5/9 . ( -6/13 + -5/13 ) - 5/9
= -5/9 . ( -1 ) -5/9
= 5/9 - 5/9
= 0
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
\(A=\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}\)
\(A=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}\)
\(A=-1+1+\frac{-1}{5}\)
\(A=\frac{-1}{5}\)
\(B=\frac{-4}{12}+\frac{18}{45}+\frac{-6}{9}+\frac{-21}{35}+\frac{6}{30}\)
\(B=\frac{-1}{3}+\frac{2}{5}+\frac{-2}{3}+\frac{-3}{5}+\frac{1}{5}\)
\(B=\left(\frac{-1}{3}+\frac{-2}{3}\right)+\left(\frac{2}{5}+\frac{-3}{5}+\frac{1}{5}\right)\)
\(B=-1+0\)
\(B=-1\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
giúp mình ik nhá
\(A=5\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\right)\)
\(=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\right)\)
\(=5\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{81-80}{80.81}\right)\)
\(=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\right)\)
\(=5\left(1-\frac{1}{81}\right)=\frac{5.80}{81}=\frac{400}{81}\)
b)
\(B=7\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{483}\right)\)
\(=7.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{21.23}\right)\)
=> \(2.B=7\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{21.23}\right)\)
\(=7\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{23-21}{21.23}\right)\)
\(=7.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{21}-\frac{1}{23}\right)\)
\(=7\left(\frac{1}{3}-\frac{1}{23}\right)=\frac{7.20}{69}=\frac{140}{69}\)
=> \(B=\frac{140}{69}:2=\frac{70}{69}\)