Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4^{72}=\left(4^3\right)^{24}=64^{24}\)
\(8^{48}=\left(8^2\right)^{24}=64^{24}\)
\(\Rightarrow4^{72}=8^{48}\)
a) \(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
mà \(2^{144}=2^{144}\)=> \(4^{72}=8^{48}\)
b) \(2^{252}=\left(2^2\right)^{126}=4^{126}\)
mà \(4^{126}< 5^{127}\)=> \(5^{127}>2^{252}\)
Ta có :A = 3 + 32 + 33 + 34 + 35 + ... + 3100
3A = 3(3 + 32 + 33 + 34 + ... + 3100)
3A = 32 + 33 + 34 + 35 + ... + 3101
3A - A = (32 + 33 + 34 + 35 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta lại có : 2A + 3 = 3n
hay 3101 - 3 + 3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Thay 2A vào biểu thức ta có :
\(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy n = 101
Ngày thứ nhất An đọc được:
3/8 . 200 = 75 (trang)
Ngày thứ hai An đọc được:
3/10 . 200 = 60 (trang)
Ngày thứ ba An đọc được;
200 - 75 - 60 = 65 (trang)
Vậy số trang An đọc lần lợt trong ba ngày là 75, 60 và 65 trang
Ngày thứ nhất An đọc được:
\(200.\frac{3}{8}=75\left(trang\right)\)
Ngày thứ hai An đọc được:
\(200.\frac{3}{10}=60\left(trang\right)\)
Ngày thứ ba An đọc được:
\(200-\left(75+60\right)=65\left(trang\right)\)
Vậy...............
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)
=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)
=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)
còn lại tự giải nhé
-72(15-49) + 15 (-56 + 72)
= -72 . -34 + 15 . 16
= 2488 + 240
= 2728
-72(15-49)+15(-56+72) =-72.(-34)+15.16 =2448+240 = 2688 làm luôn :16.17.1.15625.1 =272.15625 =4250000
Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)
\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)
(=) 1\(⋮\)n+3
=> n+3\(\in\)Ư(1)
=> n ko tồn tại
\(Tadellco::\left(\right)\left(\right)\)
\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
b, \(Tadellco\left(to\right)\left(rim\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\Rightarrow...........\)
số các số hạng là : 8192 - 1 + 1 = 8192
số các số cặp là : 8192 : 2 = 4096
giá trị mỗi cặp là : 1 + 8192 = 8193
C = 8193 x 4096 = 33558528