\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^50}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

\(7^50\) là cái gì????????

22 tháng 7 2018

\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^5}\)

\(\Rightarrow7A=1+\frac{1}{7}+...+\frac{1}{7^4}\)

\(\Rightarrow7A-A=1-\frac{1}{7^5}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^5}}{6}\)

28 tháng 7 2019

a)  ko hiểu đề 

b) \(3|x|-\frac{3}{5}-2|x|=\frac{5}{9}\)

\(\Leftrightarrow|x|-\frac{3}{5}=\frac{5}{9}\)

\(\Leftrightarrow|x|=\frac{52}{45}\)

\(\Leftrightarrow x=\pm\frac{52}{45}\)

18 tháng 1 2019

Bạn lấy 1/5 ở cả phân số 1 và 2 làm thừa số chung sau đó rút gọn và sẽ tìm đc kết qyar là 0

18 tháng 1 2019

\(P=2018.\left(\frac{\frac{1}{3}-\frac{1}{5}+\frac{1}{7}}{\frac{5}{3}-1+\frac{5}{7}}+\frac{1+\frac{4}{5}-\frac{2}{3}}{\frac{5}{4}+1-\frac{5}{6}}\right):\frac{20182018}{20192019}\)

\(P=\frac{\frac{1}{3}-\frac{1}{5}+\frac{1}{7}}{\frac{5}{3}-1+\frac{5}{7}}+\frac{1+\frac{4}{5}-\frac{2}{3}}{\frac{5}{4}+1-\frac{5}{6}}:\frac{20182018}{20192019}\)

\(P=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}+\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}:\frac{20182018}{20192019}\)

\(P=20192019\left(\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}+\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}\right):20182018\)

\(P=2019\left(\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}+\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}\right).2018\)

\(P=2019\left(\frac{1}{5}+\frac{4}{5}\right):2018\)

\(P=2019.1:2018\)

\(P=\frac{2019}{2018}\)

\(P=2018.\frac{2019}{2018}\)

\(P=2019\)

27 tháng 1 2015

a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007


=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006

=>(7-1)S=6-(1/7)^2007

=>S=1-(-1/7^2007/6)

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

Ta có:

Đặt A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{50}}\)

⇒7A=\(\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{51}}\)

⇒7A-A=\(\frac{1}{7^{51}}-\frac{1}{7}\)

⇒6A=\(\frac{1}{7^{51}}-\frac{1}{7}\)⇒A=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)

⇒C=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)+\(\frac{1}{6.7^{50}}\)

=\(\frac{4}{3.7^{51}}-\frac{1}{42}\)

1 tháng 8 2016

a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)

b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)

c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)

d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)