Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
\(\text{S}=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)
\(\text{S}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{998}-\frac{1}{999}+\frac{1}{999}-\frac{1}{1000}\)
\(\text{S}=1-\frac{1}{1000}=\frac{999}{1000}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{998.999.1000}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{1000-998}{998.999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{998.999}-\frac{1}{999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{999000}\right)\)
\(=\frac{1}{2}.\frac{499499}{999000}\)
\(=\frac{499499}{1998000}\)
Study well ! >_<
Ta có : \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Leftrightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}=\frac{189}{380}\)
\(\Rightarrow B=\frac{189}{760}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(=\frac{1}{2}.\frac{189}{380}=\frac{189}{760}\)
\(M=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\right)\)
\(M=\frac{1}{2}.\left(1-\frac{1}{102}\right)\)
\(M=\frac{101}{204}< 1\left(đpcm\right)\)
Ta có: M=11.2.3 +12.3.4 +13.4.5 +...+1100.101.102
M=2.(11.2.3 +12.3.4 +13.4.5 +...+1100.101.102 ).12
M=(21.2.3 +22.3.4 +23.4.5 +...+2100.101.102 ).12
M=(11.2 -12.3 +12.3 -13.4 +13.4 -14.5 +...+1100.101 −1101.102 ).12
M=( 11.2 −1101.102 ).12
Mà 11.2 −1101.102 <1
Và 12 <1
=> (11.2 −1101.102 ) .12 <1
=> M <1
Mình không chép đề bài nhé :
Gọi biểu thức là A :
Ta có : 2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
=\(\frac{1}{1.2}-\frac{1}{49.50}\)( Rút gọn đi ta được cái này )
=1/2 - 1/2450
Vậy A = (1/2 - 1/2450):2
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
= \(\frac{1}{1.2}-\frac{1}{49.50}\)
= \(\frac{1}{2}-\frac{1}{2450}\)
= \(\frac{612}{1225}\)
đặt
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\)
\(\Rightarrow\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1.2}-\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2450}=\frac{621}{1225}\)
\(\Rightarrow A=\frac{306}{1225}\)
\(B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{49.50}\right)\)
Đến đây bạn tự tính nhé
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(B=\frac{1}{2}\cdot\frac{612}{1225}=\frac{306}{1225}\)
Vậy \(B=\frac{306}{1225}\)
Ta xét: \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)
Tổng quát : \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\). Do đó:
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)-...-\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)
Vậy \(S=\frac{4949}{9900}\)
Làm lại câu a
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(2S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(2S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)
\(S=\frac{99}{100}:2\)suy ra \(S=\frac{99}{200}\)
a, 2S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(2S=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)
\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)
\(S=\frac{99}{100}:2=\frac{99}{200}\)
\(Z=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{2}\left(\frac{2450}{2450}-\frac{1}{2450}\right)\)
\(=\frac{1}{2}.\frac{2449}{2450}=\frac{2449}{4900}\)
Z = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2Z = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy Z = \(\frac{4949}{9900}\)