K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(aS=a+a^2+a^3+...+a^{n+1}\)

\(\Leftrightarrow S\left(a-1\right)=a^{n+1}-1\)

hay \(S=\dfrac{a^{n+1}-1}{a-1}\)

26 tháng 12 2020

Phương trình đường thẳng ON có dạng \(y=a'x+b'\left(d'\right)\)

\(\left\{{}\begin{matrix}b'=0\\a'+b'=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b'=0\\a'=3\end{matrix}\right.\Rightarrow y=3x\left(d'\right)\)

\(y=ax+b\left(d\right)\) đi qua \(E\left(2;-1\right)\Rightarrow2a+b=-1\left(1\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}a=3\\b\ne0\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow b=-7\)

\(\Rightarrow S=a^2+b^2=58\)

9 tháng 11 2022

.S=p(pb).tanB nhé bạn

28 tháng 3 2017

Câu 1 : Câu hỏi của Lê Phương Thảo - Toán lớp 6 | Học trực tuyến

Câu 2 : Câu hỏi của Shizadon - Toán lớp 6 | Học trực tuyến ( trừ cái chỗ \(\dfrac{1}{31}\) - \(\dfrac{1}{57}\) ra nha )

28 tháng 3 2017

nhầm , câu 2 là câu B bài 1 nha pạn

14 tháng 4 2018

đề bài tính "A" :

\(\left\{{}\begin{matrix}\dfrac{x}{x^2-x+1}=a\\A=\dfrac{x^2}{x^4+x^2+1}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\\\left(2\right)\end{matrix}\)

\(x=0;a=0;A=0\)

\(x\ne0;\left(1\right)\Leftrightarrow\dfrac{1}{a}=\dfrac{x^2-x+1}{x}=x+\dfrac{1}{x}-1\)

\(\left(2\right)\Leftrightarrow\dfrac{1}{A}=\dfrac{x^4+x^2+1}{x^2}=x^2+\dfrac{1}{x^2}+1=\left(x+\dfrac{1}{x}\right)^2-1=\left(x+\dfrac{1}{x}-1\right)\left(x+\dfrac{1}{x}+1\right)\)

\(\dfrac{1}{A}=\dfrac{1}{a}\left(\dfrac{1}{a}+2\right)=\dfrac{2a+1}{a^2}\)

\(a=\dfrac{-1}{2}\Leftrightarrow\left(x^2+x+1\right)=0;voN_0\)

a khác -1/2 mọi x

\(A=\dfrac{a^2}{2a+1}\)