K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(S=\frac{\left(3^0+3^1+3^2+...+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\)có n c/s 1

\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}\)

\(=3^n-1+\frac{n}{2}\)

...\(3^0+3^1+3^3+...+3^{n-1}\)bạn tính nha

7 tháng 7 2019

Câu hỏi của WINNER - Toán lớp 7 - Học toán với OnlineMath

๖ۣۜƝƘ☆ŤŔầŃ➻❥VăŃ➻❥ŃÁM❖︵copy ở đây

29 tháng 2 2020

ai giup mink nha

29 tháng 2 2020

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(=\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)(tổng thứ 2 trên tử có n chữ số 1)

Đặt \(K=3^0+3^1+3^2+3^3+...+3^{n-1}\)

\(\Rightarrow3K=3^1+3^2+3^3+3^4+...+3^n\)

\(\Rightarrow3K-K=3^1+3^2+3^3+3^4+...+3^n\)\(-3^0-3^1-3^2-3^3-...-3^{n-1}\)

\(\Rightarrow2K=3^n-1\Rightarrow K=\frac{3^n-1}{2}\)

\(\Rightarrow S=\frac{\frac{3^n-1}{2}+n}{2}=\frac{3^n+2n-1}{4}\)

Vậy \(S=\frac{3^n+2n-1}{4}\)

9 tháng 4 2017

ko bít

4 tháng 5 2017

Bài này dễ ,lớp 6 còn làm đc!

3 tháng 4 2016

S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)

=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)

=n^2/2+(3^n-1/4)=3^n+2-1/4

~~~~~~~~~~~~~~~~~~~~~

14 tháng 6 2020

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)

\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)

\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)

\(S_1=1+1+1+...+n=n\)

\(S_2=3+9+...+3^n\)

\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)

\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)

24 tháng 12 2015

áp dụng quy tắc 

số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1

Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2

1 tháng 3 2019

nhìn cái cuối là biết quy luật đó bạn :))

\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)

\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)

chỗ 30+31+...+3n-1 bn tự tính :))