K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

áp dụng quy tắc 

số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1

Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2

3 tháng 4 2016

S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)

=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)

=n^2/2+(3^n-1/4)=3^n+2-1/4

~~~~~~~~~~~~~~~~~~~~~

9 tháng 4 2017

ko bít

4 tháng 5 2017

Bài này dễ ,lớp 6 còn làm đc!

14 tháng 6 2020

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)

\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)

\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)

\(S_1=1+1+1+...+n=n\)

\(S_2=3+9+...+3^n\)

\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)

\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)

1 tháng 1 2016

Đặt P=31-1+32-1+33-1+34-1+...+3n-1

=>P=30+31+32+33+...+3n-1

=>3.P=31+32+33+34+...+3n

=>3.P-P=31+32+33+34+...+3n-30-31-32-33-...-3n-1

=>2.P=3n-30

=>2.P=3n-1

=>\(P=\frac{3^n-1}{2}\)

Lại có: S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)

=>\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+\frac{3^{4-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

=>\(S=\frac{3^{1-1}+1+3^{2-1}+1+3^{3-1}+1+3^{4-1}+1+...+3^{n-1}+1}{2}\)

=>\(S=\frac{\left(3^{1-1}+3^{2-1}+3^{3-1}+3^{4-1}+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)

=>\(S=\frac{P+1.n}{2}\)

=>\(S=\frac{\frac{3^n-1}{2}+n}{2}\)

=>\(S=\frac{\frac{3^n-1}{2}+\frac{2n}{2}}{2}\)

=>\(S=\frac{\frac{3^n-1+2n}{2}}{2}\)

=>\(S=\frac{3^n-1+2n}{4}\)