Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có: \(M=\left(\frac{1}{3}a-\frac{1}{3}b\right)-\left(a+2b\right)\)
\(M=\frac{1}{3}a-\frac{1}{3}b-a-2b\)
\(M=(\frac{1}{3}a-a)+\left(\frac{-1}{3}b-2b\right)\)
\(M=\frac{-2}{3}a+\frac{-7}{3}b\)
\(N=\frac{1}{3}a-\frac{1}{3}b-\left(a-b\right)\)
\(N=\frac{1}{3}a-\frac{1}{3}b-a+b\)
\(N=\left(\frac{1}{3}a-a\right)+\left(b-\frac{1}{3}b\right)\)
\(N=\frac{-2}{3}a+\frac{2}{3}b\)
\(\Rightarrow M+N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)+\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)
\(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{-2}{3}a+\frac{2}{3}b\)
\(=\left(\frac{-2}{3}a-\frac{2}{3}a\right)+\left(\frac{-7}{3}b+\frac{2}{3}b\right)\)
\(=\frac{-4}{3}a+\frac{-5}{3}b\)
\(\Rightarrow M+N=\frac{-4}{3}a-\frac{5}{3}b\)
ta có: \(M-N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)-\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)
\(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{2}{3}a-\frac{2}{3}b\)
\(=\left(\frac{-2}{3}a+\frac{2}{3}a\right)+\left(\frac{-7}{3}b-\frac{2}{3}b\right)\)
\(=0+\frac{-10}{3}b=\frac{-10}{3}b\)
\(\Rightarrow M-N=\frac{-10}{3}b\)
b) ta có: \(M=2a^2+ab-b^2-\left(-a^2+b^2-ab\right)\)
\(M=2a^2+ab-b^2+a^2-b^2+ab\)
\(M=\left(2a^2+a^2\right)+\left(ab+ab\right)+\left(-b^2-b^2\right)\)
\(M=3a^2+2ab+\left(-2b^2\right)\)
\(N=3a^2+b^2-\left(ab-a^2\right)\)
\(N=3a^2+b^2-ab+a^2\)
\(N=\left(3a^2+a^2\right)+b^2-ab\)
\(N=4a^2+b^2-ab\)
rồi bn tính như mk phần a nha!
c) ta có: \(M=\left(x+cy-z\right)+y+x-\left(z-x-y\right)\)
\(M=x+cy-z+y+x-z+x+y\)
\(M=\left(x+x+x\right)+\left(y+y\right)+\left(-z-z\right)+cy\)
\(M=3x+2y+\left(-2z\right)+cy\)
\(N=x-\left(x-\left(y-z\right)-x\right)\)
\(N=x-\left(x-y+z-x\right)\)
\(N=x-x+y-z+x\)
\(N=\left(x-x+x\right)+y-z\)
\(N=x+y-z\)
bn tính giúp mk cộng trừ 2 đa thức M; N luôn nha! mk chỉ rút gọn cho bn thôi
CHÚC BN HỌC TỐT!!!!

Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.
Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.
Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)
Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.

\(\Leftrightarrow\left(x-y\right)^2+z^2+\left(x-1\right)^2=0\)
=>x=y=1 và z=0

TH1: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(y+z=-x\)
\(x+z=-y\)
\(\Rightarrow M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\dfrac{-xyz}{8xyz}=\dfrac{-1}{8}\)
TH2: \(x+y+z\ne0\)
\(\Rightarrow2x+2y-z=3\)
\(\Rightarrow2x+2y=4z\)
\(\Rightarrow x+y=2z\)
\(x+z=2y\)
\(y+z=2x\)
\(\Rightarrow M=\dfrac{2z.2y.2x}{8xyz}=1\)
Vậy: \(M=\dfrac{-1}{8}\) hoặc \(1\)
Ta có \(\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x+2y-z}{z}=3\\\dfrac{2x+2z-y}{y}=3\\\dfrac{2y+2z-x}{x}=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+2y-z=3z\\2x+2z-y=3y\\2y+2z-x=3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+2y=4z\\2x+2z=4y\\2y+2z=4x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=2z\\x+z=2y\\y+z=2x\end{matrix}\right.\)
Ta có \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}\)
\(\Rightarrow M=\dfrac{2x.2y.2z}{8xyz}=\dfrac{8xyz}{8xyz}=1\)
Vậy \(M=1\)
Ta có: \(M=x+y-z-2x+y+z-2+x+y\)
\(\Rightarrow M=\left(x-2x+x\right)+\left(y+y+y\right)-\left(z-z\right)\)
\(\Rightarrow M=3y\)
\(N=x-x+y-z+x\)
\(\Rightarrow N=x+y-z\)
Ta lại có: \(M+N=3y+x+y-z\)
\(\Rightarrow M+N=x+4y-z\)
Vậy tổng \(M+N=x+4y-z\)
Ta có: M=[x+(y-z)-2x]+y+z-(2-x-y)=x+y-z-2x+y+z-2+x+y=3x
N=x-[x-(y-z)-x]=x-[x-y+z-x]=x-x+y-z+x=x+y-z
ta lại có:
M+N=3x+x+y-z=4x+y-z
M-N=3x-(x+y-z)=3x-x-y+z=2x-y+z