K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2024

`H=1+2.6+3.6^2+4.6^3+...+100.6^99`

`6H = 6+2.6^2+3.6^3+4.6^4+...+100.6^100`

`6H - H = (6+2.6^2+3.6^3+4.6^4+...+100.6^100)-(1+2.6+3.6^2+4.6^3+...+100.6^99)`

`5H = (6 - 2.6) + (2.6^2 - 3.6^2) + (3.6^3  - 4.6^3) + ... + (99. 6^99 - 100.6^99) + 100.6^100 - 1`

`5H = 100.6^100 - 1 + (-6) + (-6^2) + (-6^3) + ... + (-6^99)`

`5H = 100.6^100 - 1 - (6+6^2+6^3 + ... + 6^99)`

Đặt `S = 6+6^2+6^3 + ... + 6^99`

`6S = 6^2+6^3+6^4 + ... + 6^100`

`6S - S = (6^2+6^3+6^4 + ... + 6^100) - ( 6+6^2+6^3 + ... + 6^99)`

`5S = 6^100 - 6`

`S = ( 6^100 - 6)/5`

Khi đó: `5H = 100.6^100 - 1 - S`

`5H = 100.6^100 - 1 - ( 6^100 - 6)/5`

`5H = (500.6^100)/5 - 5/5 - ( 6^100 - 6)/5`

`5H =  (500.6^100 - 5 - 6^100 + 6)/5`

`H = (499 . 6^100 + 1)/5`

Vậy ...

 

9 tháng 5 2020

nhào vô  $$$$$$$$$$ cho money

9 tháng 5 2020

Trả lời :

Bn HACK NICK FRÉ FIRE đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

23 tháng 9 2020

Ta có: 

\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)

=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)

=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)

=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)

Đặt: \(B=1+6+6^2+...+6^{99}\)

=> \(6B=6+6^2+6^3+...+6^{100}\)

=> 6 B - B = \(6^{100}-1\)

=> B = \(\frac{6^{100}-1}{5}\)

=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)

=> \(A=\frac{499.6^{100}+1}{25}\)

a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)

b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)

\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)

\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)

c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)

\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)

Bài 1: 

a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)

\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)

\(=\dfrac{1}{2}\)

c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

9 tháng 1 2021

thanks 

13 tháng 7 2019

6^2.(6+3)+3^3/-13=36.3^2+3^3/-13=3^2(36+3)/-13=9.39/-13=-27

13 tháng 7 2019

2^10.3^8-2.3^9.2^9 / 2^10.3^8+3^8.2^8.2^2.5

=2^10.3^8(1-3) / 2^10.3^8(1+5)

=-2/6=-1/3

8 tháng 10 2016

\(A=\frac{2\cdot\left(2^3\right)^4\cdot\left(3^3\right)^8+2^2\cdot\left(2\cdot3\right)^9}{2^7\cdot6^7+2^7\cdot\left(2^3\cdot5\right).\left(3^2\right)^4}\)

\(A=\frac{2\cdot2^{12}\cdot3^{24}+2^2\cdot\left(2\cdot3\right)^9}{12^7+2^7\cdot\left(2^3\cdot5\right)\cdot3^8}\)

Đến đó thì bí

8 tháng 10 2016

hihi