Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a+b=3.\left(a-b\right)=\)\(2\frac{a}{b}\)
\(\Rightarrow a+b=3.\left(a-b\right)\)
\(\Rightarrow a+b=3a-3b\)
\(\Rightarrow3a-3b-a-b=0\)
\(\Rightarrow2a-4b=0\)
\(\Rightarrow2.\left(a-2b\right)=0\)
\(\Rightarrow\hept{\begin{cases}a-2b=0\\a=2b\end{cases}}\)
Ta có : \(a+b=\frac{2a}{b}\)
Thay \(a=2b\) vào
\(\Rightarrow2b+b=\frac{2.23}{b}\)
\(\Rightarrow3b=\frac{4b}{b}\Rightarrow3b=4\)
\(\Rightarrow b=\frac{4}{3}\Rightarrow a=2.\frac{4}{3}=\frac{8}{3}\)
Vậy \(a=\frac{8}{3}\) và \(b=\frac{4}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{5}+\frac{100}{6.7}+...+\)\(\frac{100}{98.99}+\frac{1}{99}\)
\(B=\frac{100}{2}+\frac{100}{6}+\frac{100}{12}+\frac{100}{20}+\frac{100}{30}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{9900}\)
\(B=\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+\frac{100}{4.5}+\frac{100}{5.6}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{99.100}\)
\(B=100.\frac{100}{2}+\frac{100}{2}-\frac{1}{3}+\frac{100}{3}-\frac{100}{4}+\frac{100}{4}-\frac{100}{5}+\frac{100}{5}-\frac{100}{6}+\frac{100}{6}\)\(-\frac{100}{7}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{99}-1\)
\(B=100-1\)
\(B=99\)
Chúc bạn học tốt ( -_- )
xin lỗi các bạn cái chủ đề mình vội nên chưa chọn chủ đề mong các bạn thông cảm SORRY
ta có : \(A=6.7+6.7^2+6.7^3+...+6.7^{100}\)
\(\Rightarrow7A=7.\left(6.7+6.7^2+6.7^3+...+6.7^{100}\right)\)
\(7A=6.7^2+6.7^3+6.7^4+...+6.7^{101}\)
\(\Rightarrow7A-A=6A=\left(6.7^2+6.7^3+6.7^4+...+6.7^{101}\right)-\left(6.7+6.7^2+6.7^3+...+6.7^{100}\right)\)
\(6A=6.7^{101}-6.7=6\left(7^{101}-7\right)\Leftrightarrow A=7^{101}-7\)
vậy \(A=7^{101}-7\)
ta có : \(B=6.5-6.5^2+6.5^3-...+6.5^{99}-6.5^{100}\)
\(\Rightarrow5B=5\left(6.5-6.5^2+6.5^3-...+6.5^{99}-6.5^{100}\right)\)
\(5B=6.5^2-6.5^3+6.5^4-...+6.5^{100}-6.5^{101}\)
\(\Rightarrow5B+B=6B=6.5^2-6.5^3+6.5^4-...+6.5^{100}-6.5^{101}+6.5-6.5^2+6.5^3-...+6.5^{99}-6.5^{100}\)
\(6B=6.5-6.5^{101}=6.\left(5-5^{101}\right)\Leftrightarrow B=5-5^{101}\)
vậy \(B=5-5^{101}\)
\(A=6\cdot7+6\cdot7^2+6\cdot7^3+...+6\cdot7^{100}\\ =6\cdot\left(7+7^2+7^3+...+7^{100}\right)\\ =\left(7-1\right)\cdot\left(7+7^2+7^3+...+7^{100}\right)\\ =\left(7-1\right)\cdot7+\left(7-1\right)\cdot7^2+\left(7-1\right)\cdot7^3+...+\left(7-1\right)\cdot7^{100}\\ =7^2-7+7^3-7^2+7^4-7^3+...+7^{101}-7^{100}\\ =7^{101}-7=7\cdot\left(7^{100}-1\right)\)
\(B=6\cdot5-6\cdot5^2+6\cdot5^3-...+6\cdot5^{99}-6\cdot5^{100}\\ =6\cdot\left(5-5^2+5^3-...+5^{99}-5^{100}\right)\\ =\left(5+1\right)\cdot\left(5-5^2+5^3-...+5^{99}-5^{100}\right)\\=\left(5+1\right)\cdot5-\left(5+1\right)\cdot5^2+\left(5+1\right)\cdot5^3-...+\left(5+1\right)\cdot5^{99}-5^{100}\\ =5^2+5-5^3-5^2+5^4+5^3+...+5^{100}+5^{99}-5^{101}-5^{100}\\ =5-5^{101}\\ =5\cdot\left(1-5^{100}\right)\)
\(50+\dfrac{50}{3}+\dfrac{25}{3}+\dfrac{20}{4}+...+\dfrac{100}{98\cdot99}+\dfrac{1}{99}\)
\(=\dfrac{100}{2}+\dfrac{100}{6}+\dfrac{100}{12}+...+\dfrac{100}{98\cdot99}+\dfrac{100}{99\cdot100}\)
\(=100\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=100\cdot\dfrac{99}{100}=99\)