Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{19}+\dfrac{9}{19\cdot29}+...+\dfrac{9}{1999\cdot2009}\)
\(=\dfrac{1}{19}+\dfrac{9}{10}\left(\dfrac{10}{19\cdot29}+...+\dfrac{10}{1999\cdot2009}\right)\)
\(=\dfrac{1}{19}+\dfrac{9}{10}\left(\dfrac{1}{19}-\dfrac{1}{2009}\right)\)
\(=\dfrac{1}{19}+\dfrac{1791}{38171}=\dfrac{200}{2009}\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)=\frac{1}{19}+\frac{9}{10}\cdot\frac{1990}{38171}=\frac{1}{19}+\frac{1791}{38171}=\frac{200}{2009}\)
\(A=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+....+\frac{9}{1999.2009}\)
\(A=\frac{1}{19}+\left(\frac{9}{19.29}+\frac{9}{29.39}+.....+\frac{9}{1999.2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+....+\frac{10}{1999.2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+.....+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)
\(A=\frac{1}{19}+\frac{1791}{38171}\)
\(A=\frac{200}{2009}\)
Ta có:
\(A=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\) \(\dfrac{9}{1999.2009}\)
\(=\dfrac{1}{19}+\) \(\left(\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\right)\)
\(=\dfrac{1}{19}\) \(+\) \(\dfrac{9}{10}\left(\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{1999.2009}\right)\)
\(=\dfrac{1}{19}+\dfrac{9}{10}\left(\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{1999}-\dfrac{1}{2009}\right)\)
\(=\dfrac{1}{19}+\dfrac{9}{10}\left(\dfrac{1}{19}-\dfrac{1}{2009}\right)=\dfrac{200}{2009}\)
Vậy \(A=\dfrac{200}{2009}\)
tr tốc độ kinh khủng!!!! ms có 4p mà p vừa đánh máy vừa suy nghĩ hả ? BÁI PHỤC !!!
A = 1 - 2 + 3 - 4 +...+97 - 98 + 99 - 100
A = 1 + ( -2 + 3) +...+ ( -98 + 99 ) - 100
A = 1 + 1 + ... + 1 - 100
A = 50 - 100
A = -50
B = \(\frac{7}{19.29}\) + \(\frac{7}{29.39}\) + \(\frac{7}{39.49}\) + \(\frac{7}{49.59}\) + \(\frac{7}{59.69}\)
B = 7. ( \(\frac{1}{19.29}\) + \(\frac{1}{29.39}\) + \(\frac{1}{39.49}\) + \(\frac{1}{49.59}\) + \(\frac{1}{59.69}\))
B= 7. \(\frac{1}{10}\)( \(\frac{10}{19.29}\)+ \(\frac{10}{29.39}\)+ \(\frac{10}{39.49}\)+\(\frac{10}{49.59}\)+\(\frac{10}{59.69}\))
B = 7 . \(\frac{1}{10}\) ( \(\frac{1}{19}\) - \(\frac{1}{69}\) )
B = 7 . \(\frac{1}{10}\) . \(\frac{50}{1311}\)
B = \(\frac{7}{10}\) . \(\frac{50}{1311}\)
B = \(\frac{35}{1311}\)
Chúc bạn học giỏi !!!
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2000}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2000}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1990}{38171}\right)\)\(=\frac{1}{19}+\frac{1791}{38171}\)\(=\frac{200}{2009}\)
\(\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
= \(\frac{1}{19}+\left(\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\right)\)
= \(\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2009}\right)\)
= \(\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
= \(\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
= \(\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)
= \(\frac{1}{19}+\frac{1791}{38171}\)
= \(\frac{200}{2009}\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)
\(A=\frac{1}{19}+\frac{9}{10}\left(\frac{2000}{18081}\right)\)
\(A=\frac{1}{19}+\frac{200}{2009}\)
\(A=\frac{5809}{38171}\)
MK ko chắc nhé =v ( mấy bước quy đồng lằng nhằng ko làm âu )
`A = 1/19 + 9/(19.29) + 9/(29.39) + ... + 9/(1999.2009)`
`A = 9/(9.19) + 9/(19.29) + 9/(29.39) + ... + 9/(1999.2009)`
`A = 9/10 . (10/(9.19) + 10/(19.29) + 10/(29.39) + ... + 10/(1999.2009))`
`A = 9/10 . (1/9 - 1/19 + 1/19 - 1/29 + 1/29 - 1/39 + ... + 1/1999 - 1/2009)`
`A = 9/10 . (1/9 - 1/2009) `
`A = 9/10 . 2000/18081`
`A = 200/2009`