
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A=21+22+23+24+…+22019
=> 2A = 22 + 23 + 24 + ...... + 22020
=> 2A - A = 22020 - 21
=> 2A = 22020 - 21
=> A = 22020 - 21 / 2

S=4078378
Cách làm;
S=2^2+3^2=4^2+......+2019^2
S=(2+3+4+.....+2019)^2
Số số hạng(trong ngoặc nhé)là
(2019-2):1+1=2018
S=(2019+2).2018=4078378
=>S=4078378
A=22+23+24+...+22019A=1+22+23+24+...+22019
⇔2A=23+24+25+...+22020⇔2A=2+23+24+25+...+22019
⇔2A - A = \(2^{2020}-2^{^2}\)
\(\Leftrightarrow A=2^{^2}\left(2^{^{2019}}-1\right)\)

Ta có : A = 1 + 2 + 3 + ... + 2008
\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\)
\(A=\frac{2009.2008}{2}\)
\(A=2017036\)
Ta có: B = 1 + 2 + 3 + ... + 1010
\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\)
\(B=\frac{1011.1010}{2}\)
\(B=510555\)
\(A=1+2+3+4+5+...+2008\)
\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)
\(=2009.1004=2017036\)
\(B=1+2+3+4+...+1010\)
\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)
\(=1011.505=510555\)
\(C=2+5+8+11+...+302\)
\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)
\(=15352\)
\(D=3+3^2+3^3+3^4+...+3^{2019}\)
\(3D=3^2+3^3+3^4+...+3^{2020}\)
\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)
\(2D=3^{2020}-3\)
\(\Rightarrow D=\frac{3^{2020}-3}{2}\)
\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)
\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)
\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)
\(3E=4^{101}-4^{10}\)
\(E=\frac{4^{101}-4^{10}}{3}\)

MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ
P2 TÁCH SỐ
1x22 +2x32+3x42 +.....+2018x20192 + 2019x20202
= 1x2x3 - 1x2 + 2x3x4 - 2x3+ 3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020
=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)
= S - P (*****)
Tính 4S => S=..... (1)
Tính 3P => P=..... (2)
TỪ (1) và (2) thay vào (*****) TA TÍNH ĐƯỢC A=.....

Ko ghi lại đầu bài
7A= 7(1+7+7 mũ 2+7 mũ 3 +...+7 mũ 2019) { 2}
7A=7+7 mũ 1+ 7 mũ 2+ 7 mũ 3+7 mũ 4 +...+7 mũ 2020
7A-A= Lấy { 2 } trừ đầu bài
6A=7 mũ 2020 - 1
A= ( 7 mũ 2020 -1 ) : 6
tương tự với hai ý kia
#chúc bạn hok tốt
bạn nên xem lại ý c nha
7A= 7+ 72+ 73+ ............+72019+72020
7A- 7= 72020- 1
6A= 72020-1
A= 72020-1:6
4B= 4+ 42+ 43+ ..........+ 42021
4B- B= 42021-1
3B= 42021-1
B= 42021-1: 3
BẠN THÔNG CẢM CÂU CUỐI MIK KO BÍT LÀM !!!!!

A=1+2+22+23+...+22018+22019
>2A=2(1+2+22+23+...+22018+22019)
=>2A=2+22+23+...+22018+22019
=>2A-A=(2+22+23+...+22019+22020)-(1 + 2 + 22 + 23 + ... + 22018 + 22019)
=>A=22020-1
B=1 + 32 + 34 + 36 +...+ 32018 + 32020
=>9B=3(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=>9B=3+32 + 34 + 36 +...+ 32020 + 32022
=>9B-B=(3+32 + 34 + 36 +...+ 32018 + 32020)-(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=.8B=32022-1
=>B=32022:8-1

\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3

Đề sai ! Sửa \(\frac{1}{2}\)thành \(\frac{3}{2}\)
Bài giải
\(A=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2018}\)
\(A=\frac{3}{2}+\frac{3^2}{2^2}+\frac{3^3}{2^3}+...+\frac{3^{2018}}{2^{2018}}\)
\(\frac{2}{3}A=1+\frac{3}{2}+\frac{3^2}{2^2}+...+\frac{3^{2017}}{2^{2017}}\)
\(A-\frac{2}{3}A=\frac{3^{2018}}{2^{2018}}-1\)
\(\frac{1}{3}A=\frac{3^{2018}}{2^{2018}}-1\)
\(A=\left(\frac{3^{2018}}{2^{2018}}-1\right)\cdot3=\frac{3^{2019}}{2^{2018}}-3\)
\(B=\left(\frac{3}{2}\right)^{2019}\text{ : }2=\frac{3^{2019}}{2^{2019}}\cdot\frac{1}{2}=\frac{3^{2019}}{2^{2020}}\)
\(B-A=\frac{3^{2019}}{2^{2020}}-\frac{3^{2019}}{2^{2018}}+3=3^{2019}\left(\frac{1}{2^{2018}}\cdot\frac{1}{2^4}-\frac{1}{2^{2018}}\right)+3=3^{2019}\left[\frac{1}{2^{2018}}\left(\frac{1}{2^4}-1\right)\right]+1\)
\(=3^{2019}\cdot\frac{1}{2^{2018}}\cdot\frac{-15}{16}+3\)
A=21+22+23+24+….+22019
\(2A=2^2+2^3+2^4+...+\)\(2^{2020}\)
\(2A-A=\left(2^2+2^3+...+2^{2020}\right)\)\(-\)\(\left(2+2^2+2^3+...+2^{2019}\right)\)
\(A=2^{2020}-2\)
A = 21 + 22 + 23 + 24 + ... + 22018 + 22019 (1)
=>2.A = 2.(21 + 22 + 23 + 24 + ... + 22018 + 22019)
=>2.A = 22 + 23 + 24 + 25 + ... + 22019 + 22020 (2)
Ta lấy (2) - (1):
=> 2.A-A = (22 + 23 + 24 + 25 + ... + 22019 + 22020) - (21 + 22 + 23 + 24 + ... + 22018 + 22019)
=> A = 22020 - 21
Chúc bạn học tốt!!