Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M là trung điểm của AC, E là chân đường phân giác trong góc C. Ta có:
Vì M thuộc đường trung tuyến kẻ từ B có phương trình
Kẻ AH vuông góc với CE tại H, cắt BC tại D => Tam giác ACD cân tại C vậy H là trung điểm của AD.
vectơ chỉ phương của CE là u → 1 =(2;-1;-1)
A B → =(0;2;-2). u → =(m;n;-1) là một vectơ chỉ phương của AB
=> A B → và u → cùng phương.
Chọn C
Ta có AC'=6 nên AB = 2 3 .
Mặt cầu (S) có tâm I(2;4;-1) trùng với tâm hình lập phương ABCD.A'B'C'D' và có bán kính R =1 < A B 2 nên mặt cầu (S) nằm trong hình lập phương ABCD.A'B'C'D'.
Với mọi điểm M nằm trong hình lập phương ABCD.A'B'C'D', tổng các khoảng cách từ điểm M đến 6 mặt của hình lập phương ABCD.A'B'C'D' bằng 3AB = 6 3 .
Vậy từ một điểm M bất kỳ thuộc mặt cầu (S), tổng các khoảng cách từ điểm M đến 6 mặt của hình lập phương ABCD.A'B'C'D' bằng 6 3 .
Chọn B
Nhận xét: Cho ba mặt phẳng đôi một vuông góc với nhau (P), (Q), (R) tại I. Hạ AH, AD, AE lần lượt vuông góc với ba mặt phẳng trên thì ta luôn có: IA2 = AD2 + AH2 + AE2
Chứng minh: Chọn hệ trục tọa độ với I(0; 0; 0), ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R). Khi đó A (a; b; c) thì IA2 = a2 + b2 + c2 = d2 (A, (Iyz)) + d2(A, (Ixz)) + d2(A, (Ixy)) hay IA2 = AD2 + AH2 + AE2 (đpcm)
Áp dụng: Mặt cầu (S) có tâm I (1; -1; 2) và có bán kính r = 4;
Gọi Ii và rj là tâm và bán kính của các đường tròn I (1; 2; 3)
Ta có tổng diện tích các đường tròn là:
Chọn C
Gọi M là trung điểm AC.
Trung tuyến BM có phương trình suy ra M (3-m;3+2m;2-m) => C (4 – 2m; 3 + 4m; 1 – 2m).
Vì C nằm trên đường phân giác trong góc C nên
Gọi A' là điểm đối xứng của A qua phân giác trong góc C, khi đó A' (2+4a;5-2a;1-2a) và A’ ∈ BC.
Véc tơ chỉ phương của đường thẳng chứa phân giác trong góc C là
Đáp án B.
Gọi R1,R2,R3 lần lượt là bán kính của đường tròn giao tuyến.
⇒ Một vecto pháp tuyến của mặt phẳng (MNP) là n → (1;-4;5)
Phương trình tổng quát của mặt phẳng (MNP) với M(1; 1; 1), N(4; 3; 2), P(5; 2; 1)là : (x-1)-4(y-1)+5(z-1)=0
Hay x - 4y + 5z - 2 = 0