Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1+(-3)+5+(-7)+9+(-11)+13+(-15)
= [1+(-3)]+[5+(-7)]+[9+(-11)]+[13+(-15)]
=(-2)+(-2)+(-2)+(-2)
=(-2).4
=-8
b) (-1)+3+(-5)+7+...+(-2005)+2007
=[(-1)+3]+[(-5)+7]+...+[(-2005)+2007]
=2+2+...+2
Từ 1 đến 2007 có : (2007-1)/2+1=1004 số
Mà cứ 2 số ta được 1 cặp
=>1004/2=502 cặp
=>2.502=1004
Câu c) làm tương tự câu b) nha
Nhớ **** cho mình nha ^-^
ta có
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+..\left(-7\right)^{2007}\)
\(\Rightarrow-7A=\left(-7\right)^2+\left(-7\right)^3+..+\left(-7\right)^{2008}\)
Lấy hiệu hai đẳng thức ta có
\(8A=\left(-7\right)-\left(-7\right)^{2008}\Rightarrow A=-\frac{7+7^{2008}}{8}\)
còn A không chia hết cho 43 nhé
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
A=(2+3+...+13)-(1+2+...+12)=2+3+...+13-1-2-...-12=(13-1)+(2-2)+(3-3)+...+(12-12)=12