Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)
\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)
c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)
\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)
d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)
\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)
e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)
\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)
g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)
1) \(\frac{5}{8}.\frac{7}{3}-\frac{5}{2}.\frac{1}{8}=\frac{5}{8}.\frac{7}{3}-\frac{5}{8}.\frac{1}{2}=\frac{5}{8}\left(\frac{7}{3}-\frac{1}{2}\right)=\frac{5}{8}.\frac{11}{6}=\frac{55}{48}\)
2) \(\frac{21}{10}.\frac{3}{4}-\frac{21}{10}.\frac{3}{4}=\frac{21}{10}\left(\frac{3}{4}-\frac{3}{4}\right)=\frac{21}{10}.0=0\)
3) \(\frac{-4}{11}:\frac{-6}{11}=\frac{-4}{11}.\frac{-11}{6}=\frac{-4.\left(-11\right)}{11.6}=\frac{-4.\left(-1\right)}{1.6}=\frac{4}{6}=\frac{2}{3}\)
4)\(\frac{2}{7}.\frac{14}{3}-1=\frac{2.14}{7.3}-1=\frac{2.2}{1.3}-1=\frac{4}{3}-1=\frac{1}{3}\)
5)\(\frac{4}{7}:\left(\frac{1}{5}.\frac{4}{7}\right)=\frac{4}{7}:\frac{4}{35}=\frac{4}{7}.\frac{35}{4}=\frac{4.35}{7.4}=\frac{1.5}{1.1}=5\)
6) \(\frac{12}{7}.\frac{7}{4}+\frac{35}{11}:\frac{245}{121}=\frac{12.7}{7.4}+\frac{35}{11}.\frac{121}{245}=\frac{3.1}{1.1}+\frac{35}{11}.\frac{121}{245}=3+\frac{35}{11}.\frac{121}{245}=3+\frac{35.121}{11.245}=\frac{1.11}{1.7}=\frac{11}{7}\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
a) 1-5+7-8+4-1+5-7+8
=(1-1) - (-5+5) -(7-7) -(-8+8) +4
=0
b)=-39+9
=-30
c)=(20-20)-(-4+4)-(8-8)-17+15
=-2
d)= (13-13)-(-98+98)-(91-91)-75
=-75
Bài 1: Tính
\(\text{1)}\) \(\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{2}.\dfrac{1}{8}\)
\(=\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{8}.\dfrac{1}{2}\)
\(=\dfrac{5}{8}.\left(\dfrac{7}{30}-\dfrac{1}{2}\right)\)
\(=\dfrac{5}{8}.\dfrac{-4}{15}\)
\(=\dfrac{-1}{6}\)
\(\text{2)}\) \(\dfrac{21}{10}.\dfrac{3}{4}-\dfrac{21}{10}-\dfrac{3}{4}\)
\(=\dfrac{63}{40}-\dfrac{21}{10}-\dfrac{3}{4}\)
\(=\dfrac{-21}{40}-\dfrac{3}{4}\)
\(=\dfrac{-51}{40}\)
\(\text{3)}\) \(\dfrac{-4}{11}:\dfrac{-6}{11}\)
\(=\dfrac{-4}{11}.\dfrac{11}{-6}\)
\(=\dfrac{4}{6}\)
\(\text{4)}\) \(\dfrac{2}{7}.\dfrac{14}{3}-1\)
\(=\dfrac{4}{3}-1\)
\(=\dfrac{1}{3}\)
\(\text{5)}\) \(\dfrac{4}{7}:\left(\dfrac{1}{5}.\dfrac{4}{7}\right)\)
\(=\dfrac{4}{7}:\dfrac{1}{5}:\dfrac{4}{7}\)
\(=1:\dfrac{1}{5}\)
\(=5\)
\(\text{6)}\) \(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)
\(=3+\dfrac{35}{11}.\dfrac{121}{245}\)
\(=3+\dfrac{11}{7}\)
\(=3\dfrac{11}{7}=\dfrac{32}{7}\)
\(\text{7)}\) \(\left(\dfrac{4}{3}+\dfrac{8}{3}\right).\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\dfrac{1}{4}:\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\dfrac{1}{4}:\dfrac{19}{5}\)
\(=1:\dfrac{19}{5}\)
\(=\dfrac{5}{19}\)
\(\text{8)}\) \(\left(\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{\dfrac{1}{9}}{\dfrac{1}{9}}\right):\left(\dfrac{2}{3}+\dfrac{\dfrac{7}{15}}{\dfrac{2}{5}}-\dfrac{1}{6}\right)\)
\(=\left(0+1\right):\left(\dfrac{2}{3}+\dfrac{7}{15}:\dfrac{2}{5}-\dfrac{1}{6}\right)\)
\(=1:\left(\dfrac{2}{3}+\dfrac{7}{6}-\dfrac{1}{6}\right)\)
\(=1:\left(\dfrac{2}{3}+1\right)\)
\(=1:\dfrac{5}{3}\)
\(=\dfrac{3}{5}\)
\(\text{9)}\)
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{389}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{199}{75077}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{199}{6613}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\dfrac{3}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\dfrac{3}{50}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\dfrac{114}{25}\)
\(=\dfrac{330875}{1507764}\)