Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1/1.2.3-1/2.3.4)+(1/2.3.4-1/3.4.5)+..............+(1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3))
A=1/1.2.3-1/(n+1)(n+2)(n+3)
A=1/18-1/(n+1)(n+2)(n+3)
đúng nhé
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n
b) 2+4+6+8+...+2.n
c) 1+3+5+7+...+(2.n +1)
d) 1+4+7+10+..+2005
e) 2+5+8+...+2006
f) 1+5+9+..+2001
2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,
a, Tính tổng các số lẻ có 2 chữ số.
b,Tính tổng các số chẵn có 2 chữ số.
4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190
b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004
c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
a) 1 + 2 + 3 + ... + n
= \(\frac{\left(n+1\right).n}{2}\)
b) 1 + 3 + 5 + 7 + ... + (2n + 1)
= \(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)
\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)
\(=2.\left(n+1\right).\left(n+1\right):2\)
\(=\left(n+1\right)^2\)
c) 2 + 4 + 6 + 8 + ... + 2.n
= 2.(1 + 2 + 3 + 4 + ... + n)
\(=2.\frac{\left(n+1\right).n}{2}\)
= (n + 1).n
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\) ( loại bỏ những phân số đối nhau )
\(A=1-\frac{1}{n+1}\)
\(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(A=\frac{n+1-1}{n+1}\)
\(A=\frac{n}{n+1}\)
Vậy \(A=\frac{n}{n+1}\)
Chúc bạn học tốt ~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\cdot\left(n+1\right)}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n-1}\)
\(=\frac{1}{1}-\frac{1}{n-1}\)
chúc bạn học tốt@_@
Đặt C= 1.2+2.3+3.4+...+n.(n+1)
3C=1.2.3+2.3.3+3.4.3+...+n.(n+1).3
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+....+n.(n+1)+[(n+2)-(n-1)]
3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1).(n+2)-(n-1).n.(n+1)
3C=n.(n+1).(n+2)
C=\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)