Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{\dfrac{1+x}{x}}=t\Leftrightarrow\dfrac{1}{x}=t^2-1\Rightarrow x=\dfrac{1}{t^2-1}\Rightarrow dx=-\dfrac{2t}{\left(t^2-1\right)}dt\)
\(I=\int\limits^2_3\left(t^2-1\right).t.\left(\dfrac{-2t}{\left(t^2-1\right)^2}\right)dt=\int\limits^3_2\dfrac{2t^2}{t^2-1}dt=\int\limits^3_2\left(2+\dfrac{2}{t^2-1}\right)dt\)
\(=\left(2t+ln\left|\dfrac{t-1}{t+1}\right|\right)|^3_2=...\)
lâu ko làm tích phân cũng quên béng đi rồi những câu này cũng không khó chú ý 1 chút là làm đc ak ,
trong cái căn bậc 2 nhé 3+2x-x^2= -((x-1)^2+2)) sau do dat x-1=a nen x+1=a+2 thay vap bieu tu lam binh thuong la ra thoi ak
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
Áp dụng nguyên hàm cơ bản: \(\int\sqrt{a^2-x^2}dx=\dfrac{a\sqrt{a^2-x^2}}{2}+\dfrac{a^2}{2}arcsin\dfrac{x}{2}+C\)
\(I=\left(\dfrac{x\sqrt{20-x^2}}{2}+10arcsin\dfrac{x}{2\sqrt{5}}\right)|^2_{-2}-\dfrac{1}{3}x^3|^2_{-2}=...\)
\(I=\int\sqrt{20-x^2}dx-\int x^2dx\)
Xet \(I_1=\int\sqrt{20-x^2}dx\)
\(x=\sqrt{20}\sin t\left(-\dfrac{\pi}{2}\le t\le\dfrac{\pi}{2}\right)\Rightarrow dx=\sqrt{20}\cos tdt\)
\(\Rightarrow I_1=\int\sqrt{20\cos^2t}.\sqrt{20}\cos tdt=20\int\cos^2t.dt=10\int dt+10\int\cos2t.dt=10t+5\sin2t+C\)
\(\Rightarrow I=10arc\sin\left(\dfrac{x}{\sqrt{20}}\right)+5\sin\left[2.arc\sin\left(\dfrac{x}{\sqrt{20}}\right)\right]-\dfrac{1}{3}x^3+C\)
P/s: Bạn tự thay cận vô ạ
đặt t = lnx
tôi ko biết \(\varepsilon\) trong bài là gì, tuy nhiên nếu nó là số bất kì thì xét 2 TH sau để biết đk t
TH1: \(\varepsilon\in\left(0;1\right)\)
TH2: \(\varepsilon>1\)
\(I=\int\limits^5_1\left(\frac{x}{\sqrt{x-1}+1}+\frac{\ln x}{\left(x+1\right)^2}\right)dx=\int\limits^5_1\frac{x}{\sqrt{x-1}+1}dx+\int\limits^5_1\frac{\ln x}{\left(x+1\right)^2}dx\)
- Tính \(\int\limits^5_1\frac{x}{\sqrt{x-1}+1}dx\)
Đặt \(t=\sqrt{x-1}\Rightarrow t^2=x-1\Leftrightarrow x=t^2+1\Rightarrow dx=2tdt\)
Đổi cận : Cho x=1 => t=0; x=5=>t=2
\(I_1=\int\limits^2_0\frac{t^2+1}{t+1}.2td=\int\limits^2_0\frac{2t^3+2t}{t+1}dt=\int\limits^2_0\left(2t^2-2t+4-\frac{4}{t+1}\right)dt\)
\(=\left(\frac{2}{3}t^3-t^2+4t-4\ln\left|x+1\right|\right)|^2_0=\frac{28}{3}-4\ln3\)
\(I_2=\int\limits^5_1\frac{\ln x}{\left(x+1\right)^2}dx\)
Đặt \(\begin{cases}u=\ln x\\dv=\frac{1}{\left(x+1\right)^2}dx\end{cases}\) \(\Rightarrow\begin{cases}du=\frac{1}{x}dx\\v=-\frac{1}{x+1}\end{cases}\)
Ta có \(I_2=-\frac{1}{x+1}\ln x|^5_1+\int\limits^5_1\frac{1}{x\left(x+1\right)}dx=-\frac{1}{6}\ln5+\int\limits^5_1\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)
\(=-\frac{1}{6}\ln5+\left(\ln\left|x\right|x+1\right)|^5_1=-\frac{1}{6}\ln5+\ln5-\ln6+\ln2=\frac{5}{6}\ln5-\ln3\)
Khi đó \(I=I_1+I_2=\frac{28}{3}+\frac{5}{6}\ln5=5\ln3\)
Lời giải:
\(I=\int ^{1}_{-1}\ln (x+\sqrt{1+x^2})dx\)
Chuyển $x\to -x$ thì:
\(I=\int ^{-1}_{1}\ln (-x+\sqrt{1+x^2})d(-x)\)
\(=-\int ^{-1}_{1}\ln (-x+\sqrt{1+x^2})dx=\int ^{1}_{-1}\ln (-x+\sqrt{1+x^2})dx\)
\(2I=\int ^{1}_{-1}[\ln (x+\sqrt{1+x^2})+\ln (-x+\sqrt{1+x^2})]dx\)
\(=\int^{1}_{-1}\ln [(x^2+1)-x^2]dx=\int^{1}_{-1}\ln 1dx=\int^{1}_{-1}0dx=0\)
$\Rightarrow I=0$