K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\) là 2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là 3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho 4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\) A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\) 5 cho hình trụ có độ dài đường sinh l và...
Đọc tiếp

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\)

2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là

3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho

4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\)

A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\)

5 cho hình trụ có độ dài đường sinh l và bán kính r. Nếu độ dài đường sinh khối trụ tăng lên 3 lần, diện tích đấy k đổi thì thể tích khối trụ sẽ tăng lên

A 3 lần B \(\frac{1}{3}\) lần C 9 lần D 27 lần

6 Tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số y= \(\frac{x-2}{x+1}\)

A I(1;1) B I(-1;1) C I(1;-1) D I(-1;-1)

7 tập nghiệm của bất phương trình \(log_4\left(x^2+2x-3\right)< \frac{1}{2}\)

A \(\left(-\infty;-3\right)\cup\left(1;+\infty\right)\) B \(\left(-1-\sqrt{6};-3\right)\cup\left(1;-1+\sqrt{6}\right)\) C [-3;1] D (-3;1)

8 giả sử \(\int_0^9\) f(x) dx=37 và \(\int_9^0\) g(x) . Khi đó i=\(\int_0^9\) [2f(x)+3g(x)] dx bằng

9 cho số phức z=\(\frac{1}{3-4i}\) . số phức liên hợp của z là

10 cho hai số phức z1=1+5i và z2=3-2i . Trên mặt phẳng tọa độ, điểm biểu diễn của số phức \(\overline{z}+iz_2\) là điểm nào dưới đấy

A. P(-1;-2) B.N(3;8) C.P(3;2) D Q(3;-2)

11 Trong ko gian oxyz , cho đường thẳng d : \(\frac{x +1}{1}=\frac{y-2}{3}=\frac{z}{-2}\) đi qua điểm M(0;5;m) . Gía trị của m là

A . m=0 B.m=-2 C.m=2 D.m=-1

12 Cho lăng trụ đúng ABC.\(A^,B^,C^,\) có đáy \(\Delta\) ABC vuông cân tại B ,AC =\(2\sqrt{2a}\) .Góc giữa đường thẳng \(A^,B\) và mặt phẳng (ABC) bằng \(60^0\) . Tính độ dài cạnh bên của hình lăng trụ

4
NV
6 tháng 6 2020

11.

Thay tọa độ M vào pt d ta được:

\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)

12.

\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)

\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)

\(\Rightarrow\widehat{A'BA}=60^0\)

\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)

NV
6 tháng 6 2020

8.

\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)

Đề thiếu, bạn tự điền số và tính

9.

\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)

\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)

10.

\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)

Điểm biểu diễn là \(Q\left(3;-2\right)\)

NV
20 tháng 3 2019

Đặt \(t=-x\Rightarrow dx=-dt\)

\(I=\int\limits^{-2}_2\frac{t^{2018}}{e^{-t}+1}\left(-dt\right)=\int\limits^2_{-2}\frac{e^t.t^{2018}}{e^t+1}dt=\int\limits^2_{-2}\frac{e^x.x^{2018}}{e^x+1}dx\)

\(\Rightarrow I+I=\int\limits^2_{-2}\frac{x^{2018}+e^x.x^{2018}}{e^x+1}dx=\int\limits^2_{-2}x^{2018}dx=\frac{2.2^{2019}}{2019}\)

\(\Rightarrow I=\frac{2^{2019}}{2019}\)

20 tháng 3 2019

Cảm ơn bạn rất nhiều !

1 nghiệm của bất phuong trình \(3^{x-2}\le243\) là 2 rong ko gian Oxyz cho ba điểm A (2;1;-1), B(-1;0;4), C(0;-2;-1).Phương trình nào dưới đây là pt mp đi qua A và vuông góc vói đường thẳng BC A x-2y-5z+5=0 B x-2y-5z=0 C x-2y-5z-5=0 D 2x-y+5z-5=0 3 Cho hai điểm A(1;0;-3) và B (3;2;1). Phương trinh mặt cầu đường kính AB là 4 Trong ko gian Oxyz, cho đường thẳng d \(\left\{{}\begin{matrix}x=1-t\\y=2t\\z=1+t\end{matrix}\right.\) và mặt phẳng...
Đọc tiếp

1 nghiệm của bất phuong trình \(3^{x-2}\le243\)

2 rong ko gian Oxyz cho ba điểm A (2;1;-1), B(-1;0;4), C(0;-2;-1).Phương trình nào dưới đây là pt mp đi qua A và vuông góc vói đường thẳng BC

A x-2y-5z+5=0

B x-2y-5z=0

C x-2y-5z-5=0

D 2x-y+5z-5=0

3 Cho hai điểm A(1;0;-3) và B (3;2;1). Phương trinh mặt cầu đường kính AB là

4 Trong ko gian Oxyz, cho đường thẳng d \(\left\{{}\begin{matrix}x=1-t\\y=2t\\z=1+t\end{matrix}\right.\) và mặt phẳng (P) x+2y-2z+2. Tọa độ giao điểm của đường thẳng d và mặt phẳng (P) là

A (2;2;0)

B (0;-2;0)

C (0;2;0)

D (2;-2;0)

5 Từ thành phố A tới tp B có 3 con đường , từ tp B tới tp C có 4 con đường. Hỏi có bao nhiêu cách đi từ A tới C qua B

6 Tìm modun của số phức z thỏa mãn \(5\overline{z}-z\left(2-i\right)=2-6i\) với i là đơn vị ảo

7 Tìm phần ảo của số phức z , biết (1+i)z=3z-i

8 Tim các số thực x,y thỏa mãn 2x-1+(1-2y)i=2-x+(3y+2)i

9 ập hợp tấ cả các điểm biểu diễn các số phức z thỏa mãn \(/\overline{z}+2-i/=4\) là đường tròn tâm I và bán kính R lần lượt là

10 Trong ko gian Oxyz khoảng cách từ âm mặt cầu x^2 +y^2 +z^2 -2x-4y-4z+3=0 đến mặt phẳng \(\alpha\) :x+2y-2z-4=0 bằng

A.3

B.1

C.13/3

D 1/3

3
NV
27 tháng 7 2020

7.

\(\left(1+i\right)z=3z-i\Leftrightarrow\left(1+i-3\right)z=-i\)

\(\Leftrightarrow\left(i-2\right)z=-i\Rightarrow z=\frac{-i}{i-2}=-\frac{1}{5}+\frac{2}{5}i\)

Phần ảo là \(\frac{2}{5}\)

8.

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=2-x\\1-2y=3y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{1}{5}\end{matrix}\right.\)

9.

\(\left|x-yi+2-i\right|=4\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+1\right)^2=16\)

Đường tròn tâm \(I\left(-2;-1\right)\) bán kính \(R=4\)

10.

Mặt cầu tâm \(I\left(1;2;2\right)\)

Khoảng cách: \(d\left(I;\alpha\right)=\frac{\left|1+2.2-2.2-4\right|}{\sqrt{1^2+2^2+\left(-2\right)^2}}=1\)

NV
27 tháng 7 2020

4.

Giao điểm d và (P) thỏa mãn:

\(1-t+2.2t-2\left(1+t\right)+2=0\Rightarrow t=-1\)

Thay vào pt d ta được tọa độ: \(\left(2;-2;0\right)\)

5.

Theo quy tắc nhân ta có \(3.4=12\) cách

6.

\(z=x+yi\Rightarrow5\left(x-yi\right)-\left(x+yi\right)\left(2-i\right)=2-6i\)

\(\Leftrightarrow3x-y-\left(7y-x\right)i=2-6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\-x+7y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(\Rightarrow z=1+i\Rightarrow\left|z\right|=2\)

1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0 2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1 A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\) 3 tìm một nguên hàm F(x) của hàm số f(x)...
Đọc tiếp

1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng

a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0

2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1

A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\)

3 tìm một nguên hàm F(x) của hàm số f(x) =\(\frac{x^2-1}{x^2}\) biết F(1)=0

4 cho lăng trụ đứng ABCD .\(A^,B^,C^,D^,\) có ABCD là hình hoi cạnh 2a, ABD=\(60^0\) , \(A^,B^,BA\) là hình vuông . Tính thể tích lăng trụ ABCD.\(A^,B^,C^,D^,\)

5Tính diện tích toàn phẩn của hình trụ có thiết diện qua trục là hình vuông cạnh 2a

6 Tìm số thực x,y thỏa (x+y)+(2x-y)i=3-6i

7 trong ko gian Oxyz, cho điểm I(1;2;4) và mặt phẳng (P) :2x+2y+z-1=0 . Mặt cầu tâm I và tiếp xúc với mp (P) có phuong trình là

8 tìm số gaio điểm của đồ thị hàm số y=x^4-3x^2-5 và trục hoành

A 2 B. 3 C. 1 D.4

9 Đặt t =5^x hì bất phương trình \(5^{2x}-3.5^{x+2}+32< 0\) trở thành bất pt nào

A \(t^2-75t+32< 0\) B \(t^2-6t+32< 0\) C \(T^2-3t+32< 0\) D \(t^2-16t+32< 0\)

10 trong ko gian oxyz, cho điểm A(1;-1;3),B(-3;0;-4) .Phương trình nào sau đây là pt chính tắc của đường thẳng qua A vÀ B

A \(\frac{X+3}{4}=\frac{Y}{-1}=\frac{Z-4}{3}\) B\(\frac{X+3}{1}=\frac{Y}{-1}=\frac{Z+4}{3}\) C\(\frac{X+3}{4}=\frac{Y+1}{-1}=\frac{Z+4}{7}\) D \(\frac{X+3}{-4}=\frac{Y-1}{-1}=\frac{Y+3}{7}\)

11 trong ko gian Oxyz , cho 2 vecto \(\overline{a}\left(1,m,-1\right)\),\(\overline{b}\left(2;1;3\right)\). tìm m để \(\overline{a}\perp\overline{b}\)

3
NV
14 tháng 6 2020

9.

\(5^{2x}-3.5^{x+2}+32< 0\)

\(\Leftrightarrow\left(5^x\right)^2-75.5^x+32=0\)

Đặt \(5^x=t\Rightarrow t^2-75t+32< 0\)

10.

\(\overrightarrow{BA}=\left(4;-1;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;-1;7\right)\) là 1 vtcp

Đáp án C là đáp án duy nhất đúng về vtcp, nhưng lại sai về điểm mà đường thẳng đi qua, nên cả 4 đáp án đều sai :)

Pt chính tắc đúng phải là: \(\frac{x+3}{4}=\frac{y}{-1}=\frac{z+4}{7}\)

11.

\(\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\overrightarrow{a}.\overrightarrow{b}=0\)

\(\Leftrightarrow2+m-3=0\Rightarrow m=1\)

NV
14 tháng 6 2020

5.

\(R=a;h=2a\)

\(\Rightarrow S=2\pi R.h=4\pi a^2\)

6.

\(\left(x+y\right)+\left(2x-y\right)i=3-6i\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

7.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|2.1+2.2+4-1\right|}{\sqrt{2^2+2^2+1^2}}=3\)

Pt mặt cầu: \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=9\)

8.

\(x^4-3x^2-5=0\)

Đặt \(x^2=t\ge0\Leftrightarrow t^2-3t-5=0\) (1)

\(t_1t_2=-5< 0\Rightarrow\left(1\right)\) có 2 nghiệm trái dấu => có đúng 1 nghiệm dương => pt đã cho có 2 nghiệm pb

\(\Rightarrow\) Đồ thị hs cắt trục hoành tại 2 điểm

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4 2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là 3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là 4 trong không gian với hệ...
Đọc tiếp

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4

2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là

3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là

4 trong không gian với hệ tạo độ oxyz, cho điểm M(2;3;-1) và đường thảng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\). tọa độ hình chiếu vuong góc của M trên( d)là

5 trong không gian oxyz, cho mp(p) 2x+3y+z-11=0. mặt cầu(S) có tâm I (1;-2;1) cà tiếp xúc zới (p) tại H . tọa độ điểm H là

6 pt mặt cầu có tâm I(1;2;3) và tiếp xúc với mp (oxz) là

7 trong khong gian với hệ dợ độ oxyz, mp(Q) có p x-2y+3z-1=0 trong các vecto sau, vecto nào ko phải là một vecto pháp tuyến của mp(Q)

A \(\overline{n}\)(3;-6;9) B (-2;4;-6) C(1;-4;9) D(1;-2-3)

3
NV
12 tháng 5 2020

6.

Mặt phẳng Oxz có pt: \(y=0\)

Khoảng cách từ I đến Oxz: \(d\left(I;Oxz\right)=\left|y_I\right|=2\)

\(\Rightarrow R=2\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=4\)

7.

Mặt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(k;-2k;3k\right)\) là vtpt

Bạn có ghi nhầm đề bài ko nhỉ? Thế này thì cả C và D đều ko phải vecto pháp tuyến của (Q)

NV
12 tháng 5 2020

4.

Đường thẳng d nhận \(\left(1;-2;2\right)\) là 1 vtcp

Gọi (P) là mặt phẳng qua M và vuông góc d \(\Rightarrow\) (P) nhận \(\left(1;-2;2\right)\) là 1 vtpt

Phương trình (P): \(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Tọa độ hình chiếu M' của M lên d là giao của d và (P) nên thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\)

\(\Rightarrow M'\left(2;5;1\right)\)

5.

(P) nhận \(\left(2;3;1\right)\) là 1 vtpt

Gọi d là đường thẳng qua I và vuông góc (P)

\(\Rightarrow\) d nhận \(\left(2;3;1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-2+3t\\z=1+t\end{matrix}\right.\)

H là giao điểm của d và (P) nên tọa độ thỏa mãn:

\(2\left(1+2t\right)+3\left(-2+3t\right)+1+t-11=0\) \(\Rightarrow t=1\)

\(\Rightarrow H\left(3;1;2\right)\)

NV
28 tháng 4 2020

\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)

\(\int cos2xdx=\frac{1}{2}sin2x+C\)

\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)

\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)

\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)

10 tháng 1 2017

1) Chọn B

\(\left(z+i\right)^2+3\left(z^2+3zi+2i^2\right)+2\left(z^2+4zi+4i^2\right)=0\\ \Leftrightarrow\left(z+i\right)^2+3\left(z+i\right)\left(z+2i\right)+2\left(z+2i\right)^2=0\\ \Leftrightarrow\left(2z+3i\right)\left(3z+5i\right)=0\)

\(\Rightarrow\left\{\begin{matrix}z_1=-3i:2\\z_2=-5i:3\end{matrix}\right.\)

Vậy \(2z_1+3z_2=2\left(\frac{-3i}{2}\right)+3\left(\frac{-5i}{3}\right)=-8i\)

10 tháng 1 2017

2) Chọn D

\(\Delta=\left(4-i\right)^2-4\left(5+i\right)=-5-12i\)

Ta có: \(\Delta=\left(2-3i\right)^2\Rightarrow\sqrt{\Delta}=\pm\left(2-3i\right)\)

Nghiệm của pt là:

\(z=\frac{4-i\pm\sqrt{\Delta}}{2}=\frac{4-i\pm\left(2-3i\right)}{2} \)

\(\Rightarrow\left[\begin{matrix}z=3-2i\\z=1+i\end{matrix}\right.\)

\(\left|z_1\right|< \left|z_2\right|\Rightarrow\left\{\begin{matrix}z_1=1+i\\z_2=3-2i\end{matrix}\right.\)

Vậy \(\left|z_1-2z_2\right|=\left|i+1-6+4i\right|=5\sqrt{2}\)

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b 2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là 3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng?? 4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là 5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với...
Đọc tiếp

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b

2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là

3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng??

4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là

5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với gia tốc a(t)=\(1+\frac{t}{3}\)

(m/s^2). tính quãng đường ô tô đi được sau 6 giay kể từ khi ô tô bắt đầu tăng tốc

6 cho số phức z thỏa /z-1/=/(1+i)z/ . Tập hợp biểu diễn số phức z là một đường tròn có tâm và bán kính lần lượt là

7 trong mặt phẳng oxy, cho các điểm A(4;0),B(1;-1).Gọi G là trọng tâm của tam giác ABC .Biết rằng G là điểm biểu diễn số phức z mệnh đề nào dưới đây đúng

A z=\(3+\frac{3}{2}i\) B z=2-i C z=2+i D z=\(3-\frac{3}{2}i\)

8 viết pt mặt cầu S có tâm I(1;-2;5) và tiếp xúc với mp P:x-2y-2z-4=0

9 trong ko gian oxyz, viết pt mặt cầu qua bốn điểm O, A(1;0;0);,B(0;-2;0) ,C(0;0;4)

10 trong ko gian oxyz, cho hai điểm A(1;2;-1) vÀ B(-3;0;-1) . mặt phẳng trung trực của đoạn thằng AB có phương trình là

11 rong ko gian oxyz, đường thẳng d\(\left\{{}\begin{matrix}x=t\\y=1-t\\z=2+t\end{matrix}\right.\) đi qua điểm nào sau đây

A F(0;1;2) B K(1;-1;1) C E(1;1;2) D H(1;2;0)

12 trong ko gian oxyz, cho đường thẳng \(\Delta\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=13-t\end{matrix}\right.\) (t\(\in\)R) . Đường thảng d đi qua A(0;1;-1) cắt và vuông góc với đường thẳng \(\Delta\) .viết phương trình của đường thẳng d

13 trong ko gian oxyz cho điểm A(0;1;-2) . Tọa độ điểm H là hình chiếu vuông góc cũa điểm A trên mp (P):-x-2y+2z-3=0 là

14 trong ko gian với hệ tọa độ oxyz, cho điểm A(2;3;-1) và đường thẳng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\) tọa độ điểm \(A^'\) (A phẩy ) là điểm đối xứng của điểm A qua đường thẳng d là

15 trong ko gian oxyz cho điểm A(4;-3;2).tỌA độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d \(\frac{x+2}{3}=\frac{y+2}{2}\frac{z}{-1}\)

5
NV
23 tháng 5 2020

14.

Pt mp (P) qua A và vuông góc d:

\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)

A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'

Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)

15.

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

PT (P) qua A và vuông góc d:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)

\(\Rightarrow H\left(1;0;-1\right)\)

NV
23 tháng 5 2020

11.

Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn

12.

Phương trình (P) qua A và vuông góc \(\Delta\):

\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)

Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)

13.

Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)

H là giao điểm (P) và d nên tọa độ thỏa mãn:

\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)

\(\Rightarrow H\left(-1;-1;0\right)\)