\(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\cdot\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\\ A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot29\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot31\right)}{\left(2\cdot3\cdot4\cdot...\cdot30\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot30\right)}\\ A=\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot...\cdot30}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot31}{2\cdot3\cdot4\cdot...\cdot30}\\ A=\dfrac{1}{30}\cdot\dfrac{31}{2}\\ A=\dfrac{31}{60}\)

30 tháng 3 2017

A=\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.....\dfrac{899}{900}\)

A=\(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)

A=\(\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)

A=\(\dfrac{\left(1.2.3.....28.29\right).\left(3.4.5....29.31\right)}{\left(2.3.4....29.30\right).\left(2.3.4....29.30\right)}\)

A=\(\dfrac{1.31}{30.2}\)

A=\(\dfrac{31}{60}\)

Vậy A = \(\dfrac{31}{60}\)

18 tháng 3 2017

a)

\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

18 tháng 3 2017

ai bít câu b.c ko

6 tháng 3 2018

\(\left(a\right):P=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{99}{100}\)

Nhận xét

thừa số tổng quát là \(\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\) với n =1 đến 10

\(P=\dfrac{1.3.2.4.3.5...9.11}{2^2.3^2...9^2.10^2}=\dfrac{\left(1.2.3...9\right)\left(3.4.5....11\right)}{\left(2.3.4....10\right)\left(2.3.4....10\right)}\)

\(P=\dfrac{1.2.3..9}{2.3.4..9.10}.\dfrac{3.4.5...10.11}{2.3.4....10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)

7 tháng 3 2018

Thanks ak!

18 tháng 2 2017

\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{899}{900}\)

\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{29.31}{30.30}\)

\(=\frac{\left(1\times2\times3\times...\times29\right)\left(3\times4\times5\times...\times31\right)}{\left(2\times3\times4\times...\times30\right)\left(2\times3\times4\times...\times30\right)}\)

\(=\frac{1\times2\times3\times...\times29}{2\times3\times4\times...\times30}.\frac{3\times4\times5\times...\times31}{2\times3\times4\times...\times30}\)

\(=\frac{1}{30}.\frac{31}{2}\)

\(=\frac{31}{60}\)

19 tháng 2 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\\ =\frac{1.2.3.4....29}{2.3.4...30}.\frac{3.4.5...31}{2.3.4...30}\\ =\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)

.

5 tháng 9 2022

Ta có : M . N = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\) 

\(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{100}{101}\) 

\(\dfrac{1}{101}\) 

Vậy M . N = \(\dfrac{1}{101}\)

24 tháng 3 2018

\(=\dfrac{1.4.9.16}{2.6.12.20}=\dfrac{576}{2880}=\dfrac{1}{5}\)

24 tháng 3 2018

\(\dfrac{1}{2}\cdot\dfrac{4}{6}\cdot\dfrac{9}{12}\cdot\dfrac{16}{20}=\dfrac{1}{2}\cdot\dfrac{2\cdot2}{2\cdot3}\cdot\dfrac{3\cdot3}{3\cdot4}\cdot\dfrac{4\cdot4}{4.5}=\dfrac{1}{5}\)

1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)

6 tháng 3 2017

~ So sad :( !! ~

\(A=\frac{31}{60}\)

I thinks so ! Sad

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5....
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

24 tháng 3 2018

Ta có:\(A=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{98}{99}\)

\(A< \dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{99}{100}\)

\(\Rightarrow A^2< \dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{99}{100}\)

\(A^2< \dfrac{2}{100}=\dfrac{1}{50}\)

\(\dfrac{1}{50}< \dfrac{1}{49}\)

\(\Rightarrow A^2< \dfrac{1}{49}\)

\(\Rightarrow A< \dfrac{1}{7}\left(đpcm\right)\)