Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tìm GTNN theo z thì đề đúng bằng cách:
(x+y)(1/x+1/y)>=4 suy ra 1/z=1/x+1/y>=4/x+y(do x,y>0)hay 4/4z>=4/x+y suy ra x+y>=4z.
Sau đó dùng BĐT Bunhiacopxki suy ra 2(√x+√y)^2>=(x+y)^2=16z^2 suy ra
√x+√y>=√8z=2z√2
1111111111111111++++++++++++++++66666666666666++++++++++++++++6666666666666666666
Trong đây chỉ tính dấu +
11111111111111111+ 66666666666666+ +6666666666666666666
= 6666666666666666666+177777777777777
=7844444444444443
Gọi số trẻ em là x
Số phao khi 2 đứa 1 phao là : x/2 +7
số phao khi 2 phao 1 đứa là : (x-4)2
Ta có x/2+7=(x-4).2 <=> x+14=4x-16 <=> 3x=30 <=> x=10.
Suy ra số phao là x/2+7 = 5+7=12
Vậy số trẻ em là 10, số phao là 12
Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp 10 thì .... chắc quyên thôi ...
Câu 1:
PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{2;3\right\}\)
Câu 2:
a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-5;5\right)\)
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;-3\right)\)
Câu 5:
Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)
Áp dụng bất đẳng thức Cosi ta có:
\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
có. Vì làm tròn số.