Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
B = (x-1)(2x+1) - (x2-2x-1)
B = 2x2+x-2x-1-x2-2x-1 = x2-3x-2
B = x2+x-4x-2 = x(x+1) - 4(x+1)
B = (x+1)(x-4)
\(A=2x\left(x-2\right)-x\left(2x-3\right)\\ =2x^2-4x-2x^2+3x\\ =-x\\ B=\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\\ =x\left(2x+1\right)-\left(2x+1\right)-x^2+2x+1\\ =2x^2+x-2x-1-x^2+2x+1\\ =x^2+x\\ C=\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\\ =x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)-x^3\\ =x^3-x^2y+xy^2+x^2y-xy^2+y^3-x^3\\ =y^3\)
\(D=\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\\ =x\left(12x-3\right)+4\left(12x-3\right)-2x^2-7x\\ =12x^2-3x+48x-12-2x^2-7x\\ =10x^2+38x-12\\ E=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\\ =2x\left(4x^2-2xy+y^2\right)+y\left(4x^2-2xy+y^2\right)\\ =8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\\ =8x^3+y^3\)
a) Ta có: \(\left(x-3\right)^3\)
\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(=x^3-9x^2+27x^2-27\)
b) Ta có: \(\left(2x-3\right)^3\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)
\(=8x^3-36x^2+54x-27\)
c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)
\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)
d) Ta có: \(\left(x^2-2\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)
\(=x^6-6x^4+12x^2-8\)
e) Ta có: \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-24x^2y+36xy^2-27y^3\)
f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)
\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)
\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)
a) \(\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)
b) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)
a,\(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left[\left(2x\right)^2+2x.1+1^2\right]\)
\(=\left(2x\right)^3-1=8x^3-1\)
b,\(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)
\(=x^2+2.x.2y+\left(2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
`a)(2x-1)(4x^2+2x+1)`
`=(2x-1)[(2x)^2+2x.1+1^2]`
`=(2x)^3-1^3`
`=8x^3-1`
Áp dụng HĐT:`A^3-B^3=(A-B)(A^2+AB+B^2)`
`b)(x+2y+z)(x+2y-z)`
`=[(x+2y)+z][(x+2y)-z]`
`=(x+2y)^2-z^2`
`=x^2+2.x.2y+(2y)^2-z^2`
`=x^2+4xy+4y^2-z^2`
Áp dụng HĐT:`A^2-B^2=(A+B)(A-B)`
`(A+B)^2=A^2+2AB+B^2`
a) \(\left(x+\dfrac{1}{2}\right)^2-2x^2\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-2x^2\)
\(=x^2+x+\dfrac{1}{4}-2x^2\)
\(=-x^2+x+\dfrac{1}{4}\)
b) \(\left(x-2y\right)^2-4y^2\)
\(=x^2-2\cdot x\cdot2y+\left(2y\right)^2-4y^2\)
\(=x^2-4xy+4y^2-4y^2\)
\(=x^2-4xy\)
c) \(\left(x+\dfrac{1}{2}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}y+3\cdot x+\left(\dfrac{1}{2}y\right)^2+\left(\dfrac{1}{2}y\right)^3\)
\(=x^3+\dfrac{3}{2}x^2y+\dfrac{3}{4}xy^2+\dfrac{1}{8}y^3\)
d) \(\left(2x^2-3y\right)^3\)
\(=\left(2x^2\right)^3-3\cdot\left(2x^2\right)^2\cdot3y+3\cdot2x^2\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^6-36x^4y+54x^2y^2-27y^3\)
e) \(\left(x^2+y\right)^2-\left(x+y\right)^2\)
\(=\left[\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\right]-\left(x^2+2\cdot x\cdot y+y^2\right)\)
\(=\left(x^4+2x^2y+y^2\right)-\left(x^2+2xy+y^2\right)\)
\(=x^4+2x^2y+y^2-x^2-2xy-y^2\)
\(=x^4+2x^2y-x^2-2xy\)
a) \(\left(1+x\right)^2+\left(1-x\right)^2\)
\(=1+2x+x^2+1-2x+x^2\)
\(=2x^2+2\)
b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)
\(=x^2+4x+4+1-x^2\)
\(=4x+5\)
c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)
\(=x^2-6x+9+3x^2+6x+3\)
\(=4x^2+12\)
d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-4-9x^2-6x-1\)
\(=-6x-5\)
e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=x^2-2x+5x-10-x^2-4x-4\)
\(=-x-14\)
f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)
\(=2x^2-5x+6x-15-2-4x-2x^2\)
\(=-3x-17\)
g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)
\(=16x^2-1-4+16x-16x^2\)
\(=16x-5\)
#Học tốt!
d) \(\left(4x^2-2x+1\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left[\left(2x\right)^2-2x.1+1^2\right]\)
\(=\left(2x\right)^3+1\)
\(=8x^3+1\)
a) \(\left(x+2y\right)^3=x^3+3.x^2.2y+3.x.\left(2y\right)^2+\left(2y\right)^3\)
\(=x^3+6x^2y+12xy^2+8y^3\)
b) \(\left(2x-y\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\)
\(=8x^3-12x^2y+6xy^2-y^3\)
c) \(\left(x^2+x+1\right).\left(x-1\right)=x^3-x^2+x^2-x+x-1\)
\(=\left(x^3-1\right)\)
#Câu này mình làm chi tiết 1 tí :) Bạn có thể tự làm gọn cho lẹ luôn nha :)
d) \(\left(4x^2-2x+1\right)\left(2x+1\right)=\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(=\left(2x+1\right)\left(\left(2x\right)^2-2x.1+1^2\right)\)
\(=\left(2x\right)^3+1\)
\(=8x^3+1\)