Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)
Lại có: SH2 = SC2 - HC2 (Pytago)
b) Gọi K là trung điểm của BC
Ta có: SK2 = SH2 + HK2 (Pytago)
a: S.ABC là hình chóp đều
=>SA=SB=SC và AB=AC=BC
ΔSAB cân tại S có SM là trung tuyến
nên SM vuông góc AB
=>ΔSMA vuông tại M
\(MA=\sqrt{SA^2-SM^2}=2\left(cm\right)\)
=>BA=2*2=4cm=BC=AC
b: \(S_{Xq}=\dfrac{1}{2}\left(4+4+4\right)\cdot5=6\cdot5=30\left(cm^2\right)\)
c: \(S_{tp}=30+4^2\cdot\dfrac{\sqrt{3}}{4}=30+4\sqrt{3}\left(cm^2\right)\)
Sorry cho sửa lại
Thể tích hình chóp là: \(V=\dfrac{1}{3}\cdot4\cdot\dfrac{27\sqrt{3}}{4}=9\sqrt{3cm^3}\)
Kẻ SO vuông góc (ABC)
=>SO là trung đoạn của hình chóp S.ABC và O là tâm của ΔABC
Gọi giao của AO với BC là E
=>AO vuông góc BC tại E
ΔABC đều có AE là đường cao và O là tâm
nên AO=2/3AE và \(AE=\dfrac{6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)
=>\(AO=2\sqrt{3}\left(cm\right)\)
ΔSAO vuông tại O
=>SO^2+OA^2=SA^2
=>\(SO^2+12=5^2\)
=>\(SO=\sqrt{13}\left(cm\right)\)
\(S_{XQ}=\dfrac{1}{2}\sqrt{13}\cdot6\cdot3=9\sqrt{13}\)
=>Không có câu nào đúng
A B C D S O H 24
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp :
\(V=\frac{1}{2}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2\approx2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxp = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ= AB2 = 202 = 400 (cm2 )
⇒ Stq = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).