Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)
\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)
\(tan^2a=\frac{sin^2a}{cos^2a}=\frac{1-cos^2a}{cos^2a}=\frac{1-\left(\frac{3}{5}\right)^2}{\left(\frac{3}{5}\right)^2}=\frac{16}{9}\Rightarrow\left[{}\begin{matrix}tana=\frac{4}{3}\\tana=-\frac{4}{3}\end{matrix}\right.\)
Với \(tana=\frac{4}{3}\Rightarrow cota=\frac{3}{4}\)
\(A=\frac{\frac{4}{3}+\frac{3}{4}+1}{\frac{4}{3}-\frac{3}{4}+1}=\frac{37}{19}\)
Với \(tana=-\frac{4}{3}\Rightarrow cota=-\frac{3}{4}\)
\(A=\frac{-\frac{4}{3}-\frac{3}{4}+1}{-\frac{4}{3}+\frac{3}{4}+1}=-\frac{13}{5}\)
\(\left(\tan\alpha-\cot\alpha\right)^2-\left(\tan\alpha+\cot\alpha\right)^2\)
\(=\left(\tan\alpha-\cot\alpha+\tan\alpha+\cot\alpha\right)\)\(\left(\tan\alpha-\cot\alpha-\tan\alpha-\cot\alpha\right)\)
\(=\left(2.\tan\alpha\right).\left(-2.\cot\alpha\right)\)
\(=\left(-4\right).\tan\alpha.\cot\alpha\)
\(=-4\)
cộng hai vế ta được: 2tan\(\alpha\)=\(\frac{31}{12}\)\(\Rightarrow\)tan\(\alpha\)=\(\frac{31}{24}\)
=> cot\(\alpha\)=\(\frac{17}{24}\)
mik nham r . hai cau nay rieng biet nha , ko lien quan j toi nhau