Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\frac{2}{3}+\frac{3}{2}.\frac{6}{5}-\frac{1}{5}\)
=\(\frac{13}{6}.1\)=\(\frac{13}{6}\)
b)= \(\frac{1}{9}.\frac{27}{2}-\frac{1}{5}:\frac{5}{6}\)
=\(\frac{3}{2}-\frac{6}{25}=\frac{63}{50}\)
\(\sqrt{\frac{9}{25}}+\sqrt{\frac{1}{6}}-\sqrt{\frac{4}{49}}\)\(=\sqrt{\left(\frac{3}{5}\right)^2}+\sqrt{\frac{1}{6}}-\sqrt{\left(\frac{2}{7}\right)^2}\)\(=\frac{3}{5}+\sqrt{\frac{1}{6}}-\frac{2}{7}\)\(=\left(\frac{3}{5}-\frac{2}{7}\right)+\sqrt{\frac{1}{6}}\)\(=\left(\frac{21}{35}-\frac{10}{35}\right)+\sqrt{\frac{1}{6}}\)\(=\frac{11}{35}+\sqrt{\frac{1}{6}}\)\(=\sqrt{\frac{1.6}{6.6}}+\frac{11}{35}\)\(=\frac{\sqrt{6}}{6}+\frac{11}{35}\)\(=\frac{35\sqrt{6}}{210}+\frac{66}{210}\)\(=\frac{35\sqrt{6}+66}{210}\)
Ta có:
\(=\frac{6}{12}+\frac{6}{12}+\frac{20}{12}-\frac{9}{12}\)
\(=\frac{29}{12}\)
Hok tốt
\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(b,\left(\sqrt{1\frac{9}{16}-\sqrt{\frac{9}{16}}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}-\frac{3}{4}}\right):5\)
\(=\sqrt{\frac{13}{16}}:5\)
\(=\frac{\sqrt{13}}{4}:5\)
\(=\frac{\sqrt{13}}{20}\)
a) \(10\sqrt{0,01}.\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)
\(=10\sqrt{\frac{10}{100}}.\sqrt{\frac{4^2}{3^2}}+3.\sqrt{7^2}-\frac{1}{6}\sqrt{2^2}\)
\(=10.\frac{\sqrt{10}}{10}.\frac{4}{3}+3.7-\frac{1}{6}.2\)
\(=\frac{4\sqrt{10}}{3}+27-\frac{1}{3}\)
\(=\frac{4}{3}\sqrt{10}+\frac{80}{3}\)
b) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}\)
\(=\frac{17}{4800}\)
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........