Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\sqrt{170}>\sqrt{169}\\\)
mà \(\sqrt{169}=13\)
=> \(\sqrt{170}>13\)
b) Ta có \(\sqrt{6}< \sqrt{9}\)
mà \(\sqrt{9}=3\)
=> \(\sqrt{6}< 3\)
c) ta có \(\sqrt{226}>\sqrt{225}\)
mà \(\sqrt{225}=15\)
=>\(\sqrt{226}>15\)
d) \(\sqrt{12}>\sqrt{7}\)
e)
Ta có\(\sqrt{150}< \sqrt{180}\)
mà \(\sqrt{150}=5\sqrt{6}\)
\(\sqrt{180}=6\sqrt{5}\)
=> \(5\sqrt{6}< 6\sqrt{5}\)
a, Ta có: \(\sqrt{36}=6\)
Vì \(36>35\Rightarrow\sqrt{36}>\sqrt{35}\) hay \(6>\sqrt{35}\)
ta có A=1+2+3+4+5+6=\(\sqrt{1}\)+\(\sqrt{4}\)+\(\sqrt{9}\)+\(\sqrt{16}\)+\(\sqrt{25}\)+\(\sqrt{36}\)
Ta thấy \(\sqrt{1}\)<\(\sqrt{2}\)
\(\sqrt{4}\)<\(\sqrt{6}\)
.............
\(\sqrt{36}\)<\(\sqrt{42}\)
có gì sai thì sửa nhé
=>\(\sqrt{1}\)+\(\sqrt{4}\)+\(\sqrt{9}\)+\(\sqrt{16}\)+\(\sqrt{25}\)+\(\sqrt{36}\)<\(\sqrt{2}\)+\(\sqrt{6}\)+\(\sqrt{12}\)+\(\sqrt{20}\)+\(\sqrt{30}\)+\(\sqrt{42}\)
=>B<A hay A>B
a, Ta có
\(7^2=49\)
\(\sqrt{42}^2=42\)
\(\Rightarrow\sqrt{42}< 7\)
b, Ta có
\(\sqrt{12}+\sqrt{35}\Leftrightarrow\sqrt{12^2}+\sqrt{35^2}=12+35=47\)
\(6+\sqrt{21}\Leftrightarrow6^2+\sqrt{21^2}=36+21=57\)
\(\Rightarrow\sqrt{12}+\sqrt{35}< 6+\sqrt{21}\)
\(c,\)Ta có
\(4+\sqrt{33}\Leftrightarrow16+\sqrt{33^2}=16+33=49\)
\(\sqrt{29}+\sqrt{14}\Leftrightarrow\sqrt{29^2}+\sqrt{14^2}=29+14=43\)
\(\sqrt{29}+\sqrt{14}< 4+\sqrt{33}\)
Câu d làm nốt nhé lười lắm. Không biết có sai k nếu sai thì chỉ cho mik vs nhé mn
a, Ta có: \(\sqrt{49}>\sqrt{42}\Leftrightarrow7>\sqrt{42}\)
b, Ta có: \(\sqrt{12}+\sqrt{35}< \sqrt{21}+\sqrt{36}=\sqrt{21}+6\)
c, Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)
d, Ta có: \(\sqrt{48+\sqrt{149}}< \sqrt{48+\sqrt{169}}=\sqrt{48+13}=\sqrt{61}< \sqrt{324}=18\)
Mk gợi ý vậy thôi bn tự trình bày nhé
STD well
1. a)\(2\&\sqrt{5}\)
\(2=\sqrt{4}\)
=> \(2< \sqrt{5}\)
b)\(5\&\sqrt{23}\)
\(5=\sqrt{25}\)
=> \(5>\sqrt{23}\)
c) \(\sqrt{23}+\sqrt{13}\&\sqrt{83}\)
\(\left(\sqrt{23}+\sqrt{13}\right)^2=36+2\sqrt{229}\)
\(\left(\sqrt{83}\right)^2=83\)
\(\Rightarrow36+2\sqrt{299}< 83\)
=> \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2. a) \(\sqrt{x}=5;x\ge0\)
=> x = 25
b) \(3\sqrt{x}=6;x\ge0\)
=> x = 4
c) trùng
d) \(3-\sqrt{3+1}=1\)
\(3-\sqrt{3+1}=3-2=1\)
1)
a)\(2=\sqrt{4}< \sqrt{5}\)
b) \(5=\sqrt{25}>\sqrt{23}\)
c) \(\sqrt{83}>\sqrt{81}=9\)
\(\left\{{}\begin{matrix}\sqrt{23}< \sqrt{25}=5\\\sqrt{13}< \sqrt{16}=4\end{matrix}\right.\)
\(\sqrt{23}+\sqrt{13}< 4+5=9\)
Vậy \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2) Ta có:
\(\sqrt{x}=5\Rightarrow x=25\)
\(3\sqrt{x}=6\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(3-\sqrt{3+1}=1\)
Nên:
\(3-2=1\)(luôn đúng)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)