Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Chọn D
Phương pháp
Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d:
Cách giải:
Ta có: S 14 = n 2 u 1 + ( n - 1 ) d 2 = 280
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
1: u3=-3 và u9=29
=>u1+2d=-3 và u1+8d=29
=>-6d=-32 và u1+2d=-3
=>d=16/3 và u1=-3-2d=-3-32/3=-41/3
2: \(S_{20}=\dfrac{20\cdot\left[2\cdot u1+19\cdot d\right]}{2}=10\cdot\left(-5\cdot2+19\cdot3\right)\)
=10(57-10)
=10*47=470
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là:
Đáp án đúng là: D
Công thức số hạng tổng quát của cấp số cộng un = – 5 + (n – 1).4 = 4n – 9.
u 1 = 8 , d = − 3