Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
mà \(\sin\alpha=\cos\alpha\)⇒\(2\sin^2\alpha=1\)⇒\(\sin^2\alpha=\frac{1}{2}\)
⇒\(\sin\alpha=\frac{1}{\sqrt{2}}\)⇒ \(\alpha=45\)độ
b) \(2\sin^2\alpha+3\cos^2\alpha=\frac{9}{4}\)
⇔\(2\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha=\frac{9}{4}\)⇒\(\cos^2\alpha=\frac{1}{4}\)
⇔\(\cos\alpha=\frac{1}{2}\)⇒\(\alpha=30\) dộ

ta có : \(cos^2x-2sin^2x=\dfrac{1}{4}\Leftrightarrow1-3sin^2x=\dfrac{1}{4}\)
\(\Leftrightarrow sin^2x=\dfrac{1}{4}\Leftrightarrow sinx=\pm\dfrac{1}{2}\) \(\Rightarrow x=30^o\overset{.}{,}x=330^o\)
ta có : \(cos^2x-2sin^2x=\dfrac{1}{4}\Leftrightarrow3cos^2x-2=\dfrac{1}{4}\)
\(\Leftrightarrow cos^2x=\dfrac{3}{4}\Leftrightarrow cosx=\pm\dfrac{\sqrt{3}}{2}\) \(\Rightarrow x=30^o\overset{.}{,}x=150^o\)
vậy\(x=30^o\overset{.}{,}x=330^o\overset{.}{,}x=150\)

ĐS: a) x≈20∘x≈20∘;
b) x≈57∘x≈57∘;
c) x≈57∘x≈57∘;
d) x≈18∘x≈18∘.
a) x≈20∘x≈20∘;
b) x≈57∘x≈57∘;
c) x≈57∘x≈57∘;
d) x≈18∘x≈18∘.


\(\left(\dfrac{x-4}{2x-4}+\dfrac{2}{x^2-2x}\right):\dfrac{x-2}{x+1}\)
\(=\left(\dfrac{x-4}{2\left(x-2\right)}+\dfrac{2}{x\left(x-2\right)}\right).\dfrac{x+1}{x-2}\)
\(=\dfrac{x\left(x-4\right)+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)
\(=\dfrac{x^2-4x+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)
\(=\dfrac{\left(x-2\right)^2\left(x+1\right)}{2x\left(x-2\right)\left(x-2\right)}\)
\(=\dfrac{x+1}{2x}\)
Mình làm nốt bài 2 nhé :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
⇔ \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)
⇔ \(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(c+a\right)}{c+a}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
⇔ \(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{c+a}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
⇔ \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)

a: \(0< \sin x< 1\)
nên \(\sin x-1< 0\)
b: \(0< \cos x< 1\)
nên \(1-\cos x>0\)
a: tan x=cot x
=>tan x=tan(pi/2-x)
=>x=pi/2-x+kpi
=>2x=pi/2+kpi
=>x=pi/4+kpi/2
=>x=pi/4
b: =>\(2\cdot\dfrac{1-cos2x}{2}+3\cdot\dfrac{1+cos2x}{2}=\dfrac{9}{4}\)
\(\Leftrightarrow1-cos2x+\dfrac{3}{2}+\dfrac{3}{2}cos2x=\dfrac{9}{4}\)
=>1/2cos2x=-1/4
=>cos2x=-1/2
=>2x=2/3pi+k2pi hoặc 2x=-2/3pi+k2pi
=>x=1/3pi+k2pi hoặc x=-1/3pi+k2pi
=>x=pi/3