
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.Ta có :
\(\cot41=\tan49\) ; \(\cot46=\tan44\)
sắp xếp :\(\tan27< \tan44< \tan47< \tan49\)\(\Rightarrow\tan27< \cot46< \tan47< \cot41\)
2.ta có
\(\cos28=\sin62;\cos41=\sin49\)
\(A=\cos^228+\cos^241+\cos^262+\cos^249\)
\(\Rightarrow A=\sin^262+\cos^262+\sin^249+\cos^249\)
\(\Rightarrow A=1+1=2\)

\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\)
\(\cot=\frac{1}{\tan}=\frac{1}{\frac{2\sqrt{5}}{5}}=\frac{\sqrt{5}}{2}\)

`sin^2 α+cos^2 α =1`
`=> sinα =\sqrt(1-cos^2α)=\sqrt(1-(3/4)^2) = \sqrt7/4`
`=> tanα=(sinα)/(cosα)=(3\sqrt7)/7`
`=> cotα=1/(tanα)=\sqrt7/3`
Đề bài cho cos rồi tính cos làm gì nhỉ =))) Mình tính sin thay vào chỗ đấy nhé.
-------------------------------------------------------------------------------------------------------
\(cos\alpha=\dfrac{3}{4}\Rightarrow cos^2\alpha=\dfrac{9}{16}\)
Mà \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)
\(\Rightarrow cos\alpha=\dfrac{\sqrt{7}}{4}\\ \Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{\dfrac{\sqrt{7}}{4}}=\dfrac{3\sqrt{7}}{7}\\ \Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{\sqrt{7}}{3}\)

\(B=\left(3sina+4cosa\right)^2+\left(4sina-3cosa\right)^2\)
\(=9sin^2a+24sina.cosa+16cos^2a+16sin^2a-24sina.cosa+9cos^2a\)
\(=33sin^2a+33cos^2a=33\)

\(sina=\sqrt{3}cosa\)
\(\Rightarrow\dfrac{sina}{cosa}=\sqrt{3}\)
\(\Rightarrow tana=\sqrt{3}\)
\(\Rightarrow a=60^0\) (nếu góc nhọn)
\(3sina-\sqrt{3}\cdot cosa=0\)
=>\(3\cdot sina=\sqrt{3}\cdot cosa\)
=>\(\dfrac{sina}{cosa}=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}}\)
=>\(tana=\dfrac{1}{\sqrt{3}}\)
=>\(a=30^0\)