Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B= 12/1.4.7 + 12/4.7.10 + 12/7.10.13 + ... + 12/54.57.60
=> 1/2B= 6/1.4.7 + 6/4.7.10 + 6/7.10.13 + ... + 6/54.57.60
=> 1/2B = 1/1.4 - 1/4.7 +1/4.7 - 1/7.10 +1/7.10 - 1/10.13 + ... + 1/54.57 - 1/57.60
=> 1/2B =1/1.4 - 1/57.60
=> 1/2B = 1/4 - 1/3420
=> 1/2B = 427/1710
=> B = 427/1710 . 2
=> B = 427/855
2
A= 1+ 1/22 + 1/32 +...+1/1002
=1+ 1/2.2 + 1/3.3 +...+ 1/100.100
=> A< 1+ 1/1.2 + 1/2.3 +...+ 1/99.100
= 1+ 1 - 1/2 +1/2 - 1/3 +...+1/99 - 1/100
= 2- 1/100 < 2
Vậy A < 2
Ta có \(A=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-...+\frac{1}{16.19}-\frac{1}{19.22}\)
\(=\frac{1}{4}-\frac{1}{418}=\frac{207}{836}\)
\(A=\frac{6}{1\cdot4\cdot7}+\frac{6}{4\cdot7\cdot10}+\frac{6}{7\cdot10\cdot13}+...+\frac{6}{16\cdot19\cdot22}\)
\(A=\frac{1}{1\cdot4}-\frac{1}{4\cdot7}+\frac{1}{4\cdot7}-\frac{1}{7\cdot10}+...+\frac{1}{16\cdot19}-\frac{1}{19\cdot22}\)
\(A=\frac{1}{4}-\frac{1}{19\cdot22}=\frac{207}{836}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
S = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100
3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99
3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )
2S = 1 - 1/3^100
S = (1 - 1/3^100). 1/2
a: \(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{10}-\dfrac{3}{202}=\dfrac{150}{101}\)
b:
\(2S=1+\dfrac{1}{2}+...+\dfrac{1}{512}\)
\(S=2S-S=1-\dfrac{1}{1024}=\dfrac{1023}{1024}\)
\(S=\dfrac{1}{1.4.7}+\dfrac{1}{4.7.10}+...+\dfrac{1}{22.25.28}\)
\(=\dfrac{1}{6}\left(\dfrac{6}{1.4.7}+\dfrac{6}{4.7.10}+...+\dfrac{6}{22.25.28}\right)\)
\(=\dfrac{1}{6}\left(\dfrac{1}{1.4}-\dfrac{1}{4.7}+\dfrac{1}{4.7}-\dfrac{1}{7.10}+...+\dfrac{1}{22.25}-\dfrac{1}{25.28}\right)\)
\(=\dfrac{1}{6}\left(\dfrac{1}{4}-\dfrac{1}{25.28}\right)\)
\(=\dfrac{1}{24}-\dfrac{1}{6.25.28}\)
Vậy...
\(S=\dfrac{1}{1.4.7}+\dfrac{1}{4.7.10}+\dfrac{1}{7.10.13}+...+\dfrac{1}{22.25.28}\)
\(\Rightarrow6S=\dfrac{6}{1.4.7}+\dfrac{6}{4.7.10}+\dfrac{6}{7.10.13}+...+\dfrac{6}{22.25.28}\)
\(\Rightarrow6S=\dfrac{1}{1.4}-\dfrac{1}{4.7}+\dfrac{1}{4.7}-\dfrac{1}{7.10}+...+\dfrac{1}{22.25}-\dfrac{1}{25.28}\)
\(\Rightarrow6S=\dfrac{1}{1.4}-\dfrac{1}{25.28}\)
\(\Rightarrow6S=\dfrac{1}{4}-\dfrac{1}{700}=\dfrac{87}{350}\)
\(\Rightarrow S=\dfrac{29}{700}\)
Chúc bạn học tốt!!!