Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+....+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}=\frac{10}{99}\)
a)
1 n . 1 n + 1 = 1 n ( n + 1 ) 1 n − 1 n + 1 = n + 1 − n n ( n + 1 ) = 1 n ( n + 1 ) ⇒ 1 n . 1 n + 1 = 1 n − 1 n + 1
b) Áp dụng kết quả trên để tính giá trị biểu thức sau:
M = 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 + 1 7.8 + 1 8.9 + 1 9.10 + 1 10.11 M = 1 3 − 1 4 + 1 4 − 1 5 + 1 5 − 1 6 + 1 6 − 1 7 + 1 7 − 1 8 + 1 8 − 1 9 + 1 9 − 1 10 + 1 10 − 1 11 M = 1 3 − 1 11 M = 8 33
S1=1+(-3)+5+(-7)+...+17
S2=-2+4+(-6)+8+..+(-18)
=>S1+S2=1+(-3)+5+(-7)+..+17 + (-2)+4+(-6)+8+...+(-18)
=(-2+1)+(-3+4)+(-6+5)+(-7+8)+...+(-18+17)
=-1+1+(-1)+1+...+(-1)
có 17 cặp 1+(-1) và 1 số -1
=> S1+S2=(-1+1)x17+(-1)
=0x17+(-1)
=-1
tick cả bài kia nữa nhé
Ta có : S1 = 1 + (-3) + 5 + (-7) + .... + 17
= (1 - 3) + (5 - 7) + (9 - 11)+ (13 - 15) + 17
= -2 + -2 + -2 + -2 + 17
= -2 x 4 + 17
= -8 + 17
S1 = 9
S2 = (4 - 2) + (8 - 6) + (12 - 10) + (16 - 14) + -18
= 2 x 4 - 18
S2 = -10
S1 + S2 = 9 - 10 = -1
S1=1+(-3)+5+(-7)+...+17.
S1=-2+(-2)+....+(-2).(9 số -2).
S2=-2+4+(-6)+....+(-18)
S2=-2+(-2)+...+(-2).(9 số -2).
=> (-2).(9+9)=-36.
\(S=\dfrac{1}{18}+\dfrac{1}{18\cdot9}+\dfrac{1}{162\cdot9}+\dfrac{1}{1452\cdot9}\)
\(=\dfrac{1}{9}\left(\dfrac{1}{2}+\dfrac{1}{18}+\dfrac{1}{162}+\dfrac{1}{1452}\right)\)
\(=\dfrac{1}{9}\cdot\left(\dfrac{81}{162}+\dfrac{9}{162}+\dfrac{1}{162}+\dfrac{1}{1452}\right)\)
\(=\dfrac{1}{9}\cdot\left(\dfrac{91}{162}+\dfrac{1}{1452}\right)=\dfrac{1}{9}\cdot\left(\dfrac{22022}{39204}+\dfrac{27}{39204}\right)\)
\(=\dfrac{1}{9}\cdot\dfrac{22049}{39204}=\dfrac{22049}{352836}\)
\(S=\dfrac{1}{18}+\dfrac{1}{18\cdot9}+\dfrac{1}{162\cdot9}+\dfrac{1}{1452\cdot9}\\ =\dfrac{1}{9\cdot2}+\dfrac{1}{9^2\cdot2}+\dfrac{1}{9^3\cdot2}+\dfrac{1}{9^4\cdot2}\\ =\dfrac{1}{2}\left(\dfrac{1}{9}+\dfrac{1}{9^2}+\dfrac{1}{9^3}+\dfrac{1}{9^4}\right)\)
Đặt:
\(K=\dfrac{1}{9}+\dfrac{1}{9^2}+\dfrac{1}{9^3}+\dfrac{1}{9^4}=>9K=1+\dfrac{1}{9}+\dfrac{1}{9^2}+\dfrac{1}{9^3}\\ =>9K-K=1+\dfrac{1}{9}+\dfrac{1}{9^2}+\dfrac{1}{9^3}-\dfrac{1}{9}-\dfrac{1}{9^2}-\dfrac{1}{9^3}-\dfrac{1}{9^4}\\ =>8K=1-\dfrac{1}{9^4}=\dfrac{9^4-1}{9^4}\\ =>K=\dfrac{9^4-1}{8\cdot9^4}\)
\(=>S=\dfrac{1}{2}\cdot\dfrac{9^4-1}{8\cdot9^4}=\dfrac{9^4-1}{16\cdot9^4}\)