Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10.11+11.12+12.13+...+97.98+98.99+99.100
=10-11+11-12+12-13+...+97-98+98-99+99-100
=10-100
=-90
Đặt A = 10.11 + 11.12 + ... + 98.99 + 99.100
3A = 10.11.3 + 11.12.3 + ... + 98.99.3 + 99.100.3
3A = 10.11.(12 -9) + 11.12.(13-10) + ... + 98.99.(100 - 97) + 99.100.(101-98)
3A = 10.11.12 - 9.10.11 + 11.12.13 - 10.11.12 + ... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
3A = (10.11.12 + 11.12.13 + ... + 98.99.100 + 99.100.101) - (9.10.11 + 10.11.12 + ... + 97.98.99 + 98.99.100)
3A = 99.100.101 - 9.10.11
3A = 999799
A = 999799 : 3
\(\dfrac{3}{10.11}\) + \(\dfrac{3}{11.12}\) + \(\dfrac{3}{12.13}\) + \(\dfrac{3}{13.14}\) + \(\dfrac{3}{14.15}\)
= \(\dfrac{3}{10}\) - \(\dfrac{3}{11}\) + \(\dfrac{3}{11}\) - \(\dfrac{3}{12}\) + \(\dfrac{3}{12}\) - \(\dfrac{3}{13}\) + \(\dfrac{3}{13}\) - \(\dfrac{3}{14}\) + \(\dfrac{3}{14}\) - \(\dfrac{3}{15}\)
= \(\dfrac{3}{10}\) - \(\dfrac{3}{15}\) = \(\dfrac{1}{10}\)
\(\dfrac{3}{10.11}+\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)
\(=\dfrac{3}{1}.\left(\dfrac{3}{10}-\dfrac{3}{11}+\dfrac{3}{11}-\dfrac{3}{12}+\dfrac{3}{12}-\dfrac{3}{13}+\dfrac{3}{13}-\dfrac{3}{14}+\dfrac{3}{14}-\dfrac{3}{15}\right)\)
\(=\dfrac{3}{1}.\left(\dfrac{3}{10}-\dfrac{3}{15}\right)\)
\(=\dfrac{3}{1}.\left(\dfrac{9}{30}-\dfrac{6}{30}\right)\)
\(=\dfrac{3}{1}.\dfrac{1}{10}\)
\(=\dfrac{3}{10}\)
Ta có A=1/10.11+1/11.12+...+1/98.99+1/99.100
=1/10-1/11+1/11-1/12+...+1/98-1/99+1/99-1/100
=1/10-1/100
=10/100-1/100
=9/100
Vậy A=9/100
Giải:
A=1/10.11+1/11.12+...+1/98.99+1/99.100
A=1/10-1/11+1/11-1/12+...+1/98-1/99+1/99-1/100
A=1/10-1/100
A=9/100
Chúc bạn học tốt!
5/10.11+5/11.12+5/12.13+5/13.14+5/14.15
=1/10-1/11+1/11-1/12+.....+1/14-1/15
=1/10-1/15
=1/30
\(=5\left(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{14.15}\right)\)
\(5\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-...+\frac{1}{14}-\frac{1}{15}\right)\)
\(5\left(\frac{1}{10}-\frac{1}{15}\right)\)
\(=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
cậu kia làm sai rùi
A .1/5 = 1/10.11+1/11.12+1/12.13+...+1/99,100
A . 1/5 = 1/10-1/11+1/11-1/12+...+1/99-1/100
A .1/5 = 1/10-1/100
A.1/5 = 9/199
A = 9/20
k nhé
\(A=\frac{5}{10.11}+\frac{5}{11.12}+\frac{5}{12.13}+.....+\frac{5}{99.100}\)
=\(\frac{5}{10}-\frac{5}{11}+\frac{5}{11}-\frac{5}{12}+\frac{5}{12}-\frac{5}{13}\)
=\(\frac{5}{10}-\frac{5}{100}=\frac{45}{100}\)=\(\frac{9}{20}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(C=7.\frac{3}{35}\)
\(C=\frac{3}{5}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{13\cdot14}+\frac{1}{14\cdot15}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{2}-\frac{1}{15}\)
\(=\frac{13}{30}\)
Lời giải:
$S=10.11+11.12+12.13+...+29.30$
$3S=10.11(12-9)+11.12(13-10)+12.13(14-11)+...+29.30(31-28)$
$=(10.11.12+11.12.13+12.13.14+...+29.30.31)-(9.10.11+10.11.12+...+28.29.30)$
$=29.30.31-9.10.11=25980$
$\Rightarrow S=8660$
Lời giải:
$3S=10.11(12-9)+11.12(13-10)+12.13(14-11)+...+98.99(100-97)+99.100(101-98)$
$=(10.11.12+11.12.13+12.13.14+...+98.99.100+99.100.101)-(9.10.11+10.11.12+...+97.98.99+98.99.100)$
$=99.100.101-9.10.11$
$\Rightarrow S=\frac{99.100.101-9.10.11}{3}=33.100.101-3.10.11$