K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 7 2020

Ta có:

\(\left(1+1\right)^{40}=C_{40}^0+C_{40}^1+...+C_{40}^{39}+C_{40}^{40}\)

\(\left(1-1\right)^{40}=C_{40}^0-C_{40}^1+...-C_{40}^{39}+C_{40}^{40}\)

Trừ vế cho vế:

\(2^{40}=2\left(C_{40}^1+C_{40}^3+...+C_{40}^{39}\right)\)

\(\Rightarrow S=2^{39}\)

31 tháng 7 2020

Nguyễn Việt Lâm giúp mk vs >>

30 tháng 10 2021

Gọi \(A=C_{2016}^0+C_{2016}^1+C_{2016}^2+...+C_{2016}^{2016}\)

          \(=2^{2016}\)  (HỆ QUẢ CỦA NHỊ THỨC NIUTON)

\(\Rightarrow\) \(S=2015+\left(A-C_{2016}^0-C_{2016}^1\right)\)

        \(=2015+2^{2016}-1-2016\)

        \(=2^{2016}-2\)

NV
23 tháng 11 2021

Xét khai triển:

\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)

Lấy tích phân 2 vế:

\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)

\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)

Vậy \(S=\dfrac{2^{2018}-1}{2018}\)

NV
2 tháng 11 2021

Đề thế này thì không thể hiểu được.

Em sử dụng công cụ soạn thảo toán học để đăng lại đề nhé, nó ở đây:

undefined

Mũ thì bấm "^" là được

Còn kí hiêu tổ hợp kiểu \(C_n^k\) thì ở đây:

undefined

Sau đó chọn

undefined

Hoặc đơn giản hơn thì vào chỗ gõ công thức (biểu tượng tổng sigma nói ở trên), sau đó bấm C, rồi shift _, bấm tiếp mũi tên sang phải ở bàn phím, rồi shift ^, tiếp tục mũi tên sang phâir

2 tháng 11 2021

S= 2nC0n + 2n-2 Cn-2n +2n-4 Cnn-4 +...+Cnn

16 tháng 12 2020

\(X=\left(a+b\right)^n=\sum\limits^n_{k=0}C^k_n.a^k.b^{n-k}\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Rightarrow A=\sum\limits^{90}_{k=2}C^k_{90}.2^k=...\)

Hoặc có thể làm như vầy: \(A=X-C^0_{90}.2^0-C^1_{90}.2=3^{90}-1-90.2=...\)

NV
22 tháng 12 2020

Xét khai triển:

\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)

Đạo hàm 2 vế:

\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)

\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)

Cho \(x=-1\) ta được:

\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)

\(\Rightarrow2n+1=2019\Rightarrow n=1009\)

10 tháng 9 2023

Để tính giá trị của biểu thức S, chúng ta có thể sử dụng công thức khai triển nhị thức Newton. Công thức này cho phép chúng ta tính toán các hệ số a0, a1, a2,..., a11 trong biểu thức (1+x+x^2+...+x^10)^11.

Công thức khai triển nhị thức Newton: (a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1b^(n-1) + C(n,n)a^0b^n

Trong đó, C(n,k) là tổ hợp chập k của n (n choose k), được tính bằng công thức C(n,k) = n! / (k!*(n-k)!).

Áp dụng công thức khai triển nhị thức Newton vào biểu thức (1+x+x^2+...+x^10)^11, ta có:

S = C(11,0)*a0 - C(11,1)*a1 + C(11,2)*a2 - C(11,3)*a3 + ... + C(11,10)*a10 - C(11,11)*a11

Bây giờ, để tính giá trị của S, chúng ta cần tính các hệ số a0, a1, a2,..., a11. Để làm điều này, chúng ta có thể sử dụng công thức C(n,k) để tính các hệ số từng phần tử trong biểu thức (1+x+x^2+...+x^10)^11.

Tuy nhiên, để viết bài giải ngắn nhất có thể, ta có thể sử dụng một số tính chất của tổ hợp chập để rút gọn công thức. Chẳng hạn, ta có các quy tắc sau:

C(n,k) = C(n,n-k) (đối xứng)C(n,0) = C(n,n) = 1C(n,1) = C(n,n-1) = n

Áp dụng các quy tắc trên vào công thức của S, ta có:

S = a0 - 11a1 + 55a2 - 165a3 + ... + 330a10 - a11

Với công thức trên, ta chỉ cần tính 11 hệ số a0, a1, a2,..., a10, a11 và thực hiện các phép tính nhân và cộng trừ để tính giá trị của S.

NV
17 tháng 12 2020

Xét khai triển:

\(\left(1+x\right)^{90}=C_{90}^0+C_{90}^1x+C_{90}^2x^2+...+C_{90}^{90}x^{90}\)

Thay \(x=2\) ta được:

\(3^{90}=C_{90}^0+2C_{90}^1+2^2C_{90}^2+...+2^{90}C_{90}^{90}\)

Vậy \(B=3^{90}\)

17 tháng 12 2020

Mod cho em hỏi cái này với ạ

uy tắc tam đoạn luận : \(\dfrac{\left(p\rightarrow q\right)\curlywedge p}{.\cdot.q}\)

Cho em hỏi ý nghĩa ký tự suy ra và ký tự 3 chấm với ạ

NV
13 tháng 12 2021

Xét khai triển: 

\(\left(x^2-1\right)^{20}=C_{20}^0-C_{20}^1.x^2+C_{20}^2x^4-...+C_{20}^{20}x^{20}\)

Thay \(x=2\)

\(\Rightarrow3^{20}=C_{20}^0-2^2C_{20}^1+2^4C_{20}^2-...+2^{40}C_{20}^{20}\)

\(\Rightarrow J=3^{20}\)