Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
4/5 . 7 + 4/7 . 9 + ...+ 4/59 . 61
= 2 . ( 2/5 . 7 + 2/7 . 9 + ...+ 2/59 . 61 )
= 2 . ( 1/5 - 1/7 + 1/7 - 1/9 + ...+ 1/59 - 1/61 )
= 2 . ( 1/5 - 1/61 )
= 2 . 56/305
= 112/305
Tham khảo nha !!!
4/5.7+4/7.9+...+4/59.61
=2.(2/5.7+2/7.9+...+2/59.61)
=2.(1/5-1/7+1/7-1/9+...+1/59-1/61)
=2.(1/5-1/61)
=2.56/305
=112/203
A=( 2/5.7+2/7.9+.........+2/59.61).2
A = (1/5-1/7+1/7-1/9+.......+1/59-1/61).2
A= ( 1/5-1/61)2
4/5.7+4/7.9+...+4/59.61
= 2. (2/5.7+2/7.9+...+2/59.61)
= 2. (1/5-1/7+1/7-1/9+...+1/59-1/61)
= 2. (1/5-1/61)
= 2. 56/305
= 112/305
\(\frac{4}{1.3}\)+\(\frac{4}{3.5}\)+\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{2011.2013}\)
= 1+\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{5}\)-\(\frac{1}{5}\)+\(\frac{1}{7}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)+...+\(\frac{1}{2011}\)+\(\frac{1}{2013}\)
=1+ 0 + 0 + 0 +...+ 0 + \(\frac{1}{2013}\)
=1+\(\frac{1}{2013}\)
=\(\frac{2014}{2013}\)
k dùm nha
\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{2011\cdot2013}\)
\(=2\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2011\cdot2013}\right)\)
\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=2\cdot\left(1-\frac{1}{2013}\right)\)
\(=2\cdot\frac{2012}{2013}\)
\(=\frac{4024}{2013}\)
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2013.2015}=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)
\(=2.\frac{2014}{2015}\)
\(=\frac{4028}{2015}\)
Đặt A=như đã cho.
=>1/2A=2/5*7+2/7*9+2/9*11+...+2/59*61.
=>1/2A=1/5-1/7+1/7-1/9+1/9-1/11+...+1/59-1/61.
=>1/2A=1/5-1/61=56/305.
=>A=56/305*2=112/305.
k nha đúng đó.Có j kb nha.
Đặt : A = \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
A = \(2.\)\(\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
A = 2 . ( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\))
A = 2 . \(\left(\frac{1}{5}-\frac{1}{61}\right)\)
A = 2 . \(\frac{56}{305}\)= \(\frac{112}{305}\)
\(=4\left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{55}\right)\)
\(=4.\frac{2}{11}\)
\(=\frac{8}{11}\)
Tick đi mình giải cho