Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
Xem lại đề, 99.100 mới đúng!
Đặt 1.2 + 2.3 + 3.4 + ... + 99.100 = A
Ta có 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 33.100.101 = 333300
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
(Bài toán 1:Cho A =1.2+2.3+3.4+…+97.98+98.99+99.100. Tính giá trị của A
Lời giải 1:Theo đề bài ta có:
A.3=(1.2+2.3+3.4+…+97.98+98.99+99.100).3 =1.2(3-0)+2.3(4-1)+3.4(5-2)+ …+98.99(100-97)+99.100(101-97) =1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6-…-97.98.99+98.99.100-98.99.100-99.100.101=99.100.101.
Vậy A = 333300
Bây giờ ta tạm thời quên đi đáp số 333300 mà chỉ chú ý tới tích cuối cùng 99.100.101 trong đó 99.100 là số hạng cuối cùng của A và 101là số tự nhiên kề sau của 100 , tạo thành tích ba số tự nhiên liên tiếp. Ta dễ dàng nghĩ tới kết quả sau:
1.2+2.3+3.4+4.5+5.6 +…+n(n+1)=
Các bạn có thể tự kiểm nghiệm kết quả này bằng cách giải tuơng tự như trên.
Bây giờ ta tìm lời giải khác cho bài toán .
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+... 99.100.101-98.99.100
3S= 99.100.101
S= 99.100.101/3
S=333300
Ai t ick tui tui t ick lại
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3S = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
S=1.2+2.3+3.4+...+39.40
3S=1.2.3+2.3.3+3.4.3+...+39.40.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+39.40.(41-38)
3S=1.2.3+1.2.0+2.3.4+2.3.1+3.4.5+3.4.2+...+39.40.41+39.40.38
3S=1.2.0+39.40.41= 63960
S=63960 :3= 21320
Vậy S= 21320