Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
Thay x= -1/2 vào A:
\(A=3\left|-\frac{1}{2}\right|^2-4\left|-\frac{1}{2}\right|+5\)
\(=\frac{3}{4}-2+5\)
\(=3,75\)
Thay x=4 vào B:
\(B=2\left|4-2\right|+3\left|1-4\right|\)
\(=2\cdot2+3\cdot3\)
\(=10\)
---------------
|x| = 1/2 => x= +- 1/2
Th1: x=-1/2
Thay x=-1/2 vào C:
\(C=\frac{5\left(-\frac{1}{2}\right)^2-7\cdot\left(-\frac{1}{2}\right)+1}{3\cdot\left(-\frac{1}{2}\right)-1}\)
\(=\frac{\frac{5}{4}+\frac{7}{2}+1}{-\frac{3}{2}-1}\)
\(=\frac{23}{4}:\left(-\frac{5}{2}\right)\)
\(=-\frac{23}{10}\)
Th2: x=1/2
Thay x=1/2 vào C:
\(C=\frac{5\cdot\frac{1}{2}^2-7\cdot\frac{1}{2}+1}{3\cdot\frac{1}{2}-1}\)
\(=\frac{\frac{5}{4}-\frac{7}{2}+1}{\frac{3}{2}-1}\)
\(=\left(-\frac{5}{4}\right):\frac{1}{2}\)
\(=-\frac{5}{2}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(A=\left(x^2-1\right)\left(2+x\right)-\left(x-2\right)\left(4+2x+x^2\right)-x\left(2x+1\right)\)
\(=\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)^2\left(x+2\right)-x\left(2x+1\right)\)
\(=\left(x+2\right)\left(4x-5\right)-x\left(2x+1\right)=4x^2-5x+8x-10-2x^2-x\)
\(=2x^2+2x-10\)thay x vô hơi bị sướng tay D:
\(B=x^2+4xy+4y^2+\left(x-2y\right)^2-2\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)
\(=\left(x+2y-x+2y\right)^2=16y^2=1\)
Cau a la 1
Cau b la 1215
Cau c la 768
Cau d la \(\frac{4185}{13}\)
\(\frac{4^2.4^3}{2^{10}}=\frac{4^{2+3}}{\left(2^2\right)^5}=\frac{4^5}{4^5}=1\)
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=1215\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^2.2^5.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^2.2^5.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\left(-3\right)^3=-27\)
(x-2)(x+2)=0
<=>\(x^2-2^2=0\)
<=>\(x^2=2^2\)
<=>\(x^2=4\)
=> x = \(\orbr{\begin{cases}2\\-2\end{cases}}\)
(2x-2)(4x+7) = 0
<=> 2x-2 = -4x-7
<=> 2x + 4x = -7-2
<=> 6x = -9
<=> x = \(\frac{-3}{2}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và \(a^2-b^2+2c^2\)=108
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)= \(\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}\)= 4
=> a = 2.4 = 8
=> b= 3.4 = 12
=> c = 4.4 =16
\(A=3x^3-6x^2+2\left|x\right|+7\) với \(x=-\frac{1}{3}\)
Thay \(x=-\frac{1}{3}\) vào A, ta có:
\(A=3.\left(-\frac{1}{3}\right)^3-6.\left(-\frac{1}{3}\right)^2+2.\left|-\frac{1}{3}\right|+7\)
\(A=\left(-\frac{1}{9}\right)-\frac{2}{3}+\frac{2}{3}+7\)
\(A=\frac{62}{9}\)
\(B=4\left|x\right|-2\left|y\right|\) với \(x=\frac{1}{4};y=-2\)
\(B=4.\left|\frac{1}{4}\right|-2.\left|-2\right|\)
\(B=1-4\)
\(B=-3\)
làm hộ với
xét tam giác ABD và tam giác AED có:
+ AD cạnh chung
+BAD=EAD(AD là tia phân giác của ABC)
+AB=AE(gt)
=>tam giác ABD=tam giác AED(cgc)
=>ABD=AED(2 góc tương ứng)
=>AED=90
=>DE vuông với AE
hay DE vuông với AC