Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)
=1+(2-3-4+5)+(6-7-8+9)+...+(98-99-100+101)+102
=1+0+0+0+....+102
=103
1 + 2 - 3 - 4 + 5 + 6 -7 -8 + 9+...+101 + 102 - 103 - 104
= (1+2 - 3 - 4) + (5 + 6 -7 - 8) +...+ (101 + 102 - 103 - 104)
= -4.24
= -96
\(-\dfrac{5}{6}-\dfrac{3}{10}=-\dfrac{17}{15}\)
\(-\dfrac{1}{3}+-\dfrac{3}{4}-\dfrac{2}{5}=-\dfrac{13}{12}-\dfrac{2}{5}=-\dfrac{89}{60}\)
\(-\dfrac{2}{9}-\dfrac{11}{6}-\dfrac{7}{12}=-\dfrac{37}{18}-\dfrac{7}{12}=-\dfrac{95}{36}\)
\(\dfrac{2}{5}--\dfrac{7}{10}-\dfrac{4}{15}=\dfrac{11}{10}-\dfrac{4}{15}=\dfrac{5}{6}\)
\(#YH\)
\(#NBaoNgoc\)
a,A=0-2+4-6+...+2010-2012
A=-2+-2+...+-2+-2 (503 cặp)
A=-2.503
A=-1006
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
Q = 1 + 4³ + 4⁶ + 4⁹ + ... + 4¹⁰²
⇒ 4³.Q = 64Q = 4³ + 4⁶ + 4⁹ + 4¹² + ... + 4¹⁰² + 4¹⁰⁵
⇒ 63Q = 64Q - Q
= (4³ + 4⁶ + 4⁹ + 4¹² + ... + 4¹⁰² + 4¹⁰⁵) - (1 + 4³ + 4⁶ + 4⁹ + ... + 4¹⁰²)
= 4¹⁰⁵ - 1
⇒ Q = (4¹⁰⁵ - 1)/63