Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+...+\frac{1}{19}.\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.......+\frac{2}{18.19}+\frac{2}{19.20}.\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...-\frac{1}{19}+\frac{1}{20}\)
\(=1+\frac{1}{20}\)
\(=\frac{1}{20}\)
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.........+\frac{2}{18.19}+\frac{2}{19.20}\)
= \(\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+.......+\frac{2}{18}-\frac{2}{19}+\frac{2}{19}-\frac{2}{20}\)
=\(\frac{2}{1}-\frac{2}{20}=\frac{40}{20}-\frac{2}{20}=\frac{38}{20}=\frac{19}{10}\).
= \(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{19}{20}=\frac{1}{20}\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)
= đến đây bn xem trong thống kê hỏi đáp nhé
= :))
\(\frac{3}{2}\cdot\frac{17}{5}+\frac{19}{5}\cdot\frac{3}{2}+\frac{3}{2}\cdot\frac{1}{5}\)
\(=\frac{3}{2}\left[\frac{17}{5}+\frac{19}{5}+\frac{1}{5}\right]\)
\(=\frac{3}{2}\cdot\frac{37}{5}=\frac{111}{10}\)
Ta có phần tử \(=\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\)
\(=\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+\left(\frac{19}{1}+1\right)-19\)
\(=\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{1}+\frac{20}{20}-20\)
\(=20.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{19}+\frac{1}{20}\right)\left(1\right)\)
Thay (1) vào P ta được :
\(P=\frac{20.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}}\)
\(=20\)