Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 2006 x ( 2005 + 2 ) - 1997 / 2006 x 2005 + 2015
= 2006 x 2005 + 2006 x 2 -1997 / 2006 x 2005 + 2015
= 2006 x 2005 + 4012 - 1997 / 2006 x 2005 + 2015
= 2006 x 2015 + 2015 / 2006 x 2005 + 2015
= 1
Nhớ k nha
\(\frac{2006\times2007-1997}{2006\times2005+2015}=\frac{2006\times\left(2005+2\right)-1997}{2006\times2005+2015}\)
\(=\frac{2006\times2005+2006\times2-1997}{2006\times2005+2015}\)
\(=\frac{2006\times2005+4012-1997}{2006\times2005+2015}=\frac{2006\times2005+2015}{2006\times2005+2015}=1\)
\(\frac{2006\times2005-1}{2004\times2006+2005}=\frac{2006\times\left(2004+1\right)-1}{2004\times2006+2005}=\frac{2006\times2004+2006\times1-1}{2004\times2006+2005}=\frac{2006\times2004+2005}{2006\times2004+2005}=1\)
\(\frac{2006\times2005-1}{2004\times2006+2005}=\frac{2006\times\left(2004+1\right)-1}{2004\times2006+2005}=\frac{2004\times2006+2006\times1-1}{2004\times2006+2005}\)
\(=\frac{2004\times2006+2005}{2004\times2006+2005}=1\)
\(\frac{2006.2005-1}{2004.2006+2005}\)
\(=\frac{2006\left(2004+1\right)-1}{2004.2006+2005}\)
\(=\frac{2006.2004+2006-1}{2004.2006-2005}\)
\(=\frac{2006.2004+2005}{2004.2006+2005}=1\)
nha
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
\(=\frac{2006x\left(2005+2\right)-1997}{2006x2005+2015}=\frac{2006x2005+4012-1997}{2006x2005+2015}=\frac{2006x2005+2015}{2006x2005+2015}=1\)