Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(D=\frac{6}{3,5}+\frac{6}{5.7}+...+\frac{6}{21.23}\)
\(D=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{21.23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(D=3.\frac{20}{69}\)
\(D=\frac{20}{23}\)
Học tốt
Bài làm
\(D=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{21.23}\)
\(D=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{21.23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(D=3.\frac{20}{69}\)
\(D=\frac{20}{23}\)
\(E=\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\)
\(E=10.\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)\)
\(E=10.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(E=10.\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(E=10.\frac{4}{55}\)
\(E=\frac{8}{11}\)
\(G=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(G=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(G=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(G=\frac{1}{1}-\frac{1}{100}\)
\(G=\frac{99}{100}\)
Nhớ k cho m nha
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{2}-\frac{1}{201}\)
\(=\frac{201}{402}-\frac{2}{402}\)
\(=\frac{199}{402}\)
\(\text{ta có:}\frac{6}{a\left(a+7\right)}+1=\frac{\left(a+1\right)\left(a+6\right)}{a\left(a+7\right)}\text{ do đó:}A=\frac{2.7}{1.8}.\frac{3.8}{2.9}.....\frac{101.106}{100.107}\)
\(=\frac{2.3...101.\left(7.8....106\right)}{1....101.\left(8.9.....107\right)}=\frac{7}{107}\)
\(\left(1+\frac{1}{4}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right).\left(1+\frac{1}{24}\right)...\left(1+\frac{1}{9999}\right)\)
\(=\frac{5}{4}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{10000}{9999}=\frac{5.9.16.25...10000}{4.8.15.24...9999}=\frac{5.3^2.4^2.5^2...100^2}{4.2.4.3.5.4.6...99.101}\)
\(=\frac{5.3.4.5...100.3.4.5...100}{4.2.3.4...99.4.5.6...101}=\frac{5.100.3}{4.2.101}=\frac{5.25.3}{2.101}=\frac{375}{202}.\)
a, Ta có:
\(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{0,6-\frac{3}{9}+\frac{3}{11}}+\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{2\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}{3\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}+\frac{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}{-3\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}=\frac{2}{3}+\frac{-2}{3}=0\)
k đúng cho mình nha. Thanks!!!
a, bày cho mình cách viết bằng phân số đi , mình trình bày cách làm cho. k đúng cho mình nha.
\(B=-\frac{1}{3}+\frac{2}{5}-\frac{2}{3}-\frac{3}{5}+\frac{1}{5}\)
\(=\left(-\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{2}{5}-\frac{3}{5}+\frac{1}{5}\right)\)
\(=-\frac{3}{3}+0\)
\(=-1\)
=.= hk tốt!!
B=\(\frac{-4}{12}+\frac{18}{45}+\frac{-6}{9}+\frac{-21}{35}+\frac{6}{30}\)
=\(\frac{-4}{4\cdot3}+\frac{2\cdot9}{5\cdot9}+\frac{\left(-2\right)\cdot3}{3\cdot3}+\frac{\left(-4\right)\cdot7}{5\cdot7}+\frac{6}{5\cdot6}\)
=\(\frac{-1}{3}+\frac{2}{5}+\frac{-2}{3}+\frac{-4}{5}+\frac{1}{5}\)
= \(\left(\frac{-1}{3}+\frac{-2}{3}\right)+\left(\frac{-4}{5}+\frac{2}{5}+\frac{1}{5}\right)\)
=\(\frac{-3}{3}+\frac{-1}{5}\)
= \(-1+\frac{-1}{5}\)=\(\frac{-5-1}{5}=\frac{-6}{5}\)
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}=\frac{2003}{2004}\)
b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(2A=1-\frac{1}{2005}\)
\(2A=\frac{2004}{2005}\)
\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)
a)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=\frac{1}{1}-\frac{1}{2004}\)
\(\Rightarrow=\frac{2003}{2004}\)
b)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(=\frac{1}{1}-\frac{1}{2005}\)
\(\Rightarrow=\frac{2004}{2005}\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
\(C=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{45.47}\)
\(\Rightarrow C=\frac{6}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)
\(\Rightarrow C=3.\left(\frac{1}{3}-\frac{1}{47}\right)\)
\(\Rightarrow C=3.\frac{44}{141}\)
\(\Rightarrow C=\frac{44}{47}\)
\(C=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{45.47}=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{45.47}\right)=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\\ \)
\(=3.\left(\frac{1}{3}-\frac{1}{47}\right)=\frac{3.44}{141}=\frac{44}{47}\)