Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2.3 + 2.3.4 + ....+ 48.49.50
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ...+ 48.49.50.(51-17)
= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .....+ 48.49.50.51 - 47.48.49.50
= 48.49.50.51
=> A = 48.49.50.51:4 = 12.49.50.51
bài b) làm tương tự nha
Ta có: \(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow S=\frac{1}{4}.\frac{1}{2\left(n+1\right)\left(n+2\right)}\)
Vậy...
Ta nhận thấy:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{3-1}{1.2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{4-2}{2.3.4}=\frac{2}{2.3.4}\)
Vậy \(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right),\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right),...\\ \frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right).\)
Cộng các số hạng của vế trái và các số hạng của vế phải, ta được:
\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\\ =\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\\ =\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
Bài 2.
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)\(\Rightarrow S_n=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Bài 1:
\(1\dfrac{13}{15}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{14}\)
\(=\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{15}.3+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{5}+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{5}+\dfrac{-2}{5}\)
\(=\dfrac{5}{5}=1\)
\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
\(A=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=2.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(A=2\cdot\frac{4949}{9900}=\frac{4949}{4950}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{98.99.100}=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{k}=\frac{1}{2}\Rightarrow k=2\)
C=\(\frac{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}{4}\)