Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4\)
Trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => MC = 2,5
\(S_{BMC}=\frac{1}{2}MC.BH=3\left(cm^2\right)\)
\(AH=\frac{AB^2}{AC}=\frac{9}{5}=1,8\left(cm\right)\)
\(S_{ABH}=\frac{1}{2}AH.BH=2,16\left(cm^2\right)\)
BK là TPG
\(\frac{AK}{AB}=\frac{KC}{BC}=\frac{AK+KC}{AB+BC}=\frac{5}{7}\)
\(KC=\frac{20}{7}\left(cm\right)\)
\(KM=KC-MC=\frac{20}{7}-2,5=\frac{5}{14}\)
\(S_{BKM}=\frac{1}{2}BH.KM=\frac{3}{7}\)
\(S_{BHK}=S_{ABC}-S_{BKM}-S_{BMC}-S_{BHA}=\frac{72}{175}\)
\(0,2\times317\times7+0,14\times3520+33,1\times14=0,14\times317+0,14\times3520+33,1\times14\)
Tương đương với: \(14\times3,17+14\times35,20+33,1\times14=14\times\left(3,17+35,20+33,1\right)=14\times71,44\)
=1000,16
2+5+8+...+65 = \(\frac{\left(65-2\right):3+1}{2}.\left(65+2\right)=11.67=737\)
=> 2+5+8+...+65 - 387 = 737 - 387 = 350
Vậy kết quả là \(\frac{1000,16}{350}=2,8576\)
\(\frac{0,2x317x7+0,14x3520+33,1x14}{2+5+8+...+65-387}=\frac{1}{100}\cdot\frac{20.317.7+14\cdot3520+3310\cdot14}{2+5+8+...+65-387}\)
Ta có:2+5+8+...+65 có (65-2):3+1=22(số hạng)
=>2+5+...+65=(2+65).22:2=737
=>\(\frac{1}{100}\cdot\frac{20.317.7+14\cdot3520+3310\cdot14}{2+5+8+...+65-387}=\frac{1}{100}\cdot\frac{14.3170+14.3520+14.3310}{737-387}=\frac{1}{100}\cdot\frac{14.\left(3170++3520+3310\right)}{350}\)\(=\frac{1}{100}\cdot\frac{14.10000}{350}=\frac{14.100}{350}=\frac{7.2.10.2.5}{10.5.7}=2.2=4\)
0,2x317x7+ 0,14x3520+ 33,1x 14= 1,4x 317+ 1,4x352+ 331x1,4= 1,4 (317+352+331)= 1,4 x1000= 1400
a,(11/15+4/15)+(5/7+2/7)
=1+1
=2
b,5/9x(1/2+6/4)
=5/9x2
=10/9
c,1/2:(7/8+9/8)
=1/2:2
=1
d,(17/10-7/10)+1/2
=1+1/2
=3/2
\(a,\left(16.23+16.77\right)-\left(5.30-5.20\right)\)
\(=16.\left(23+77\right)-5.\left(30-20\right)\)
\(=16.100-5.10\)
\(=1600-50\)
\(=1550\)
\(b,8\frac{1}{2}\div\frac{17}{5}+\frac{6}{8}\div3\frac{2}{3}\)
\(=\frac{17}{2}.\frac{5}{17}+\frac{3}{4}\div\frac{11}{3}\)
\(=\frac{17}{2}.\frac{5}{17}+\frac{3}{4}.\frac{3}{11}\)
\(=\frac{5}{2}+\frac{9}{44}\)
\(=\frac{110}{44}+\frac{9}{44}\)
\(=\frac{119}{44}\)
\(a,=16.100-5.10=1600-50=1550\)
\(b,8\frac{1}{2}:\frac{17}{5}+\frac{6}{8}:3\frac{2}{3}=\frac{17}{2}.\frac{5}{17}+\frac{6}{8}:\frac{11}{3}=\frac{5}{2}+\frac{18}{88}=\frac{220}{88}+\frac{18}{88}=\frac{238}{88}=2\frac{31}{44}\)
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=2\)
b) \(\frac{5}{9}\times\frac{1}{2}\times\frac{5}{9}\times\frac{6}{4}=\frac{25}{81}\times\frac{3}{4}=\frac{25}{108}\)
c) \(\frac{7}{8}\div\frac{1}{2}+\frac{9}{8}\div\frac{1}{2}=\left(\frac{7}{8}+\frac{9}{8}\right)\div\frac{1}{2}\)
\(=2\div\frac{1}{2}=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}=\frac{3}{2}\)
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}\)
\(=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=1+1\)
\(=2\)
b) \(\frac{5}{9}.\frac{1}{2}.\frac{5}{9}.\frac{6}{4}\)
\(=\left(\frac{5}{9}\right)^2\left(\frac{1}{2}.\frac{6}{4}\right)\)
\(=\frac{25}{81}.\frac{3}{4}\)
\(=\frac{25}{108}\)
c) \(\frac{7}{8}:\frac{1}{2}+\frac{9}{8}:\frac{1}{2}\)
\(=\frac{7}{8}.2+\frac{9}{8}.2\)
\(=2\left(\frac{7}{8}+\frac{9}{8}\right)\)
\(=2.\frac{16}{8}\)
\(=2.2\)
\(=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}\)
\(=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}\)
\(=\frac{2}{2}+\frac{1}{2}\)
\(=\frac{3}{2}\)
khong biet