Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì câu a có dấu x mk ko hiểu nên mk làm câu b nhé:
có 12 - 22 = -3
32 - 42 = -7
...................
992 - 1002 = -199
vậy chúng cách nhau 4 đơn vị
⇒ -((199 + 3).((199 - 3):4 + 1):2))) = -5050 vậy A = -5050
1) A=4+22+23+...+2100
2A=8+23+24+...+2101
A=2101+8-4+22
A=2101+8-4+4
A=2101
b)Ghi đầu baì
=(1+2+3+...+100).(12+22+32+....+1002).(65.111-13.555)
=(1+2+3+...+100).(12+22+32+....+1002).(65.111-13.5.111)
=(1+2+3+...+100).(12+22+32+....+1002).(111.(65-65))
=(1+2+3+...+100).(12+22+32+....+1002).111.0
=(1+2+3+...+100).(12+22+32+....+1002).0
=0
\(a.\) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3}{-13}\)
\(=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\frac{3^3.\left(-1\right)}{1}=-27\)
\(b.\)\(A=2^2+4^2+6^2+...+20^2=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(A=2^2.\frac{10.\left(10+1\right).\left(2.10+1\right)}{6}=4.385=1540\)
( Ta có: công thức tính tổng bình phương liên tiếp tứ 1 đến n là: \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\))
\(c.\)\(B=100^2+200^2+...+1000^2=\left(100.1\right)^2+\left(100.2\right)^2+...+\left(100.10\right)^2\)
\(B=100^2.1^2+100^2.2^2+...+100^2.10^2=100^2.\left(1^2+2^2+...+10^2\right)\)
Áp dụng công thức \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có: \(B=100^2\times385=3,850,000\)
Mik làm 1 phần rùi bạn làm tương tự nhá :
Ta có : 3.B = 3 + 32 + 33 + ...+ 3101
=> 3.B - B = ( 3 + 32 + 33 +...+ 3101 ) - ( 1 + 3 + 32 + ...+ 3100 )
=> 2.B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
Không tìm được giá trị cụ thể bạn nhá
3B=3(1+3+3^2+3^3+...+3^100)
2B=3B-B=(3+3^2+3^3+...+3^101)-(1+3+3^2+3^3+...+3^100)
=3^101-1
A = 1002 + 2002 + 3002 + ... + 9002 + 10002
A = 1002.(12 + 22 + 32 + ... + 92 + 102)
A = 10000.385
A = 3850000