\(A=\) \(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Câu 2 sai đề, thử rồi

9 tháng 2 2019

â, -4/9(7/15+8/15)=-4/9

b,-5/4(16/25+9/25)=-5/4

,..... 

dài quá mik làm ko hết 

hok tốt

30 tháng 4 2019

Bài làm

a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)

           = \(1-\frac{9}{9^{100}+1}\)

\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)

      = \(1-\frac{10}{10^{99}-1}\)

Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)

nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)

\(\Rightarrow A< B\)

30 tháng 4 2019

Bài làm

b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)

          = \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)

\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)

     = \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)

Vì \(1+5^9.3< 1+6^9.4\)

nên A < B

19 tháng 6 2021

\(A=\frac{15\times3^{11}+4\times27^4}{9^7}\)

\(A=\frac{15\times177147+4\times531441}{4782969}\)

\(A=\frac{2657205+2125764}{4782969}\)

\(A=\frac{47829969}{47829969}=1\)

19 tháng 6 2021

Tự nhiên phần Σ của tớ bị lỗi nên tớ tính tử số rồi tính mẫu nhé :

Tử số của A :

15 x 311 + 4 x 274

= 5 x 312 + 4 x 312

= 312 x ( 5 + 4 ) 

= 312 x 9 

= 312 x 32

= 314

Mẫu số của A :

97 = (32)7 = 32 x 7 = 314

Vậy A = 314 : 314 = 1

3 tháng 3 2018

\(a)\) \(\frac{-11}{12}< \frac{x}{12}< \frac{-3}{4}\)

\(\Leftrightarrow\)\(\frac{-11}{12}< \frac{x}{12}< \frac{-9}{12}\)

\(\Leftrightarrow\)\(-11< x< -9\)

\(\Rightarrow\)\(x=-10\)

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU