Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1
a, \(5\times\frac{-7}{10}=\frac{-35}{10}=\frac{-7}{2}\)
b, \(\frac{4}{5}\times\frac{-7}{10}=\frac{-28}{50}=\frac{-14}{25}\)
c, \(\frac{4}{9}+\frac{4}{3}\times\frac{16}{4}=\frac{4}{9}+\frac{16}{3}=\frac{52}{9}\)
d, \(\frac{11}{22}-\frac{3}{9}\times\frac{14}{21}=\frac{11}{22}-\frac{2}{9}=\frac{55}{198}=\frac{5}{18}\)
BÀI 2
\(A=\frac{6}{13}\times\frac{5}{7}+\frac{6}{13}\times\frac{2}{7}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{119}{91}\)
\(A=\frac{161}{91}=\frac{23}{13}\)
\(B=\frac{11}{15}\times\frac{4}{11}+\frac{11}{15}\times\frac{5}{11}+\frac{11}{15}\times\frac{2}{11}\)
\(B=\frac{4}{15}+\frac{1}{3}+\frac{2}{15}\)
\(B=\frac{11}{15}\)
\(C=\left(\frac{19}{64}-\frac{33}{22}+\frac{24}{51}\right)\times\left(\frac{1}{5}-\frac{1}{15}-\frac{2}{15}\right)\)
\(C=\frac{-797}{1088}\times0\)
\(C=0\)
\(D=\frac{8}{13}\times\frac{7}{12}+\frac{8}{13}\times\frac{5}{12}-\frac{1}{12}\)
\(D=\frac{14}{39}+\frac{10}{39}-\frac{1}{12}\)
\(D=\frac{83}{156}\)
bạn biết câu náy không (24 + 11) . {546 - [14 . (64 - 2^{3}3) : 2]} =
a) = 1/10 - 1/11 + 1/11 -1/12 + 1/12 - 1/13 +1/13 1/14 +...+ 1/78 - 1/79
= 1/10 - 1/79
= máy tính ok
mấy câu khác bn làm tương tự là đc nhưng nhớ nhanh thêm khoảng cách giữa các mẫu nha
a)\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{78.79}=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{78}-\frac{1}{79}=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
b) \(\frac{8}{7.9}+\frac{8}{9.11}+...+\frac{8}{133.135}=4\left(\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{133.135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{133}-\frac{1}{135}\right)=4\left(\frac{1}{7}-\frac{1}{135}\right)=4.\frac{128}{945}=\frac{456}{945}\)
c) \(\frac{12}{8.11}+\frac{12}{11.14}+...+\frac{12}{503.506}=4\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{503.506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{503}-\frac{1}{506}\right)=4\left(\frac{1}{8}-\frac{1}{506}\right)=\frac{249}{506}\)
d) \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{391.394}=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{391.394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{391}-\frac{1}{394}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{394}\right)=\frac{1}{3}.\frac{195}{788}=\frac{65}{788}\)
e) \(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{602.605}=\frac{4}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\right)=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{605}\right)=\frac{4}{3}.\frac{24}{121}=\frac{32}{121}\)
g) Sửa đề\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{820}=2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1640}\right)=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{40.41}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{40}-\frac{1}{41}\right)=2\left(1-\frac{1}{41}\right)=2.\frac{40}{41}=\frac{80}{41}\)
a: =35/17-18/17-9/5+4/5
=1-1=0
b: =-7/19(3/17+8/11-1)
=7/19*18/187=126/3553
c: =26/15-11/15-17/3-6/13
=1-6/13-17/3
=7/13-17/3=-200/39
A = - 1 + 3 - 5 + 7 - 9 + 11 - 13 + 15 - 17
A = (-1 + 11) + (3 - 13) + (7- 17) + (-5 + 15) - 9
= - 10 + 10 - 10 + 10 - 9
= (-10 + 10) + (-10 + 10) - 9
= 0 + 0 - 9
= - 9
B = 1+2-3-4+5+6-7-8+9+10-11-12+13+14-15-16+17+18-19-20
B =(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+(13+14-15-16)+(17+18-19-20)
B = -4+ (-4) + (-4) + (-4) + (-4)
B = -4 x 5
B = -20
a; - \(\dfrac{10}{13}\) + \(\dfrac{5}{17}\) - \(\dfrac{3}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{11}{20}\)
= - (\(\dfrac{10}{13}\) + \(\dfrac{3}{13}\)) + (\(\dfrac{5}{17}\) + \(\dfrac{12}{17}\)) - \(\dfrac{11}{20}\)
= - 1 + 1 - \(\dfrac{11}{20}\)
= 0 - \(\dfrac{11}{20}\)
= - \(\dfrac{11}{20}\)
b; \(\dfrac{3}{4}\) + \(\dfrac{-5}{6}\) - \(\dfrac{11}{-12}\)
= \(\dfrac{9}{12}\) - \(\dfrac{10}{12}\) + \(\dfrac{11}{12}\)
= \(\dfrac{10}{12}\)
= \(\dfrac{5}{6}\)
c; [13.\(\dfrac{4}{9}\) + 2.\(\dfrac{1}{9}\)] - 3.\(\dfrac{4}{9}\)
= [\(\dfrac{52}{9}\) + \(\dfrac{2}{9}\)] - \(\dfrac{4}{3}\)
= \(\dfrac{54}{9}\) - \(\dfrac{4}{3}\)
= \(\dfrac{14}{3}\)
dễ mà tự tính đi lớp 5 như mình mà cũng làm được đó