Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có số số hạng là:
(2014-2):1+1=2013
Ta sẽ chia dãy số thành 503 nhóm,mỗi nhóm có 4 số và dư 1 số.
Ta có:
D=(2+3-4-5)+(6+7-8-9)+....+(2010+2011-2012-2013)+2014
D=-4 +(-4) +(-4)+...... +(-4)+2014
Vì có 503 nhóm mỗi nhóm có giá trị bằng -4 nên 503 nhóm có giá trị bằng
-4x503=-2012
Thay vào ta có:
D=-2012+2014
D=2
\(S=1+2+3-4-5+6+7+8-9-10+...+2011+2012+2013-2014-2015\)
\(=\left(1+2+3-4-5\right)+\left(6+7+8-9-10\right)+...+\left(2011+2012+2013-2014-2015\right)\)
\(=\left(-3\right)+2+...+2007\)
Từ 2 đến 2007 sẽ có: \(\dfrac{2007-2}{5}+1=402\left(số\right)\)
Tổng của dãy số 2;7;12;...;2007 sẽ là:
\(\dfrac{\left(2007+2\right)\cdot402}{2}=403809\)
=>S=403809-3=403806
Ta có:
A= 1+2-3-4+5+6-7-8+...-2011-2012+2013+2014
= (1+2-3-4)+(5+6-7-8)+...(2009+2010-2011-2012)+(2013+2014)
Ta thấy từ 1 đến 2012 có: \(x = {2012-1 \over 1}\)+1=2012(số)
Ta nhóm các số hạng kia trong tổng A và bớt đi tổng 2013+2014, mỗi nhóm là 4 số hạng liên tiếp
=> Có số nhóm là: 2012:4=503(nhóm)
Ta lại có:
A= (1+2-3-4)+(5+6-7-8)+...(2009+2010-2011-2012)+(2013+2014)
=(-4)+(-4)+...+(-4)+(2013+2014)
(503 số hạng -4)
=(-4).503+(2013+2014)
=(-2012)+4027
=2015
Vậy A=2015
Ta có : 1+2-3-4+5+6-7-8+...-2011-2012+2013+2014
=(1+2)+(-3-4+5+6)+(-7-8+9+10)+...+(-2011-2012+2013+2014)
=3+(4+4+...+4)(có 503 số 4)
=3+4*503
=3+2012
=2015
1+2-3-4-5+6+7-8-9-10+11+12-13-14-15+...+2011+2012-2013-2014-2015+2016+2017-2018-2019-2020 giup mik v
Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$
$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$
$=-(9+14+19+...+2019+2024)$
Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$