K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

6 tháng 8 2015

=1/2[1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + 1/3*4 - 1/4*5 + ... + 1/18*19 - 1/19*20] 

=1/2[1/2 - 1/19*20] 

=1/2*189/380 

=189/760

26 tháng 3 2016

đầu bài: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20

= (1+19)+(2+18)+(3+17)+(4+16)+(5+15)+(6+14)+(7+13)+(8+12)+(9+11)+20

=    20   +   20   +   20   +    20  +   20  +    20  +   20   +   20   +   20   +20

=   20.10

=   200

27 tháng 9 2017

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=\(\frac{\left(1+20\right)20}{2}\)=210

6 tháng 8 2017

Ta thấy: Số các số hạng của tổng A ( trừ số 19/1 ) là:    ( 18 - 1 ) : 1 + 1 = 18 ( số hạng )
Khi đó:
\(A=\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{17}{3}+\frac{18}{2}+\frac{19}{1}\)
\(A=1+\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+\left(\frac{3}{17}+1\right)+...+\left(\frac{17}{3}+1\right)+\left(\frac{18}{2}+1\right)\)
\(A=\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{3}+\frac{20}{2}\)
\(A=20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)\)
Khi đó:
\(\frac{A}{B}=\frac{20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}=20\)

25 tháng 4 2019

Bạn Vũ Quang Vinh ơi bạn vứt luôn số 19/1 rồi hả

16 tháng 5 2016

a)=1/2*2/3......*19/20

=1/20

b)=3/2*4/3......*2008/2007

=3/2007

16 tháng 5 2016

a quên = 3/2008

3 tháng 11 2018

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)(Dùng cộng rồi trừ chính số đó bằng 0)

=\(\frac{1}{2}-\frac{1}{20}\)

=\(\frac{10}{20}-\frac{1}{20}\)( Dùng phương pháp quy đồng)

=\(\frac{9}{20}\)

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}...\frac{19}{20}=\frac{1.2...19}{2.3...20}=\frac{1}{20}\)

22 tháng 1 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{9}{20}\)

8 tháng 7 2018

Ta có : 

\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

8 tháng 7 2018

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)