K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

 Đặt   \(A=\frac{1}{3}+\frac{1}{9}+.......+\frac{1}{59049}\)

  \(3A=3.\left(\frac{1}{3}+\frac{1}{9}+......+\frac{1}{59049}\right)\)

\(3A=1+\frac{1}{3}+........+\frac{1}{19683}\)

\(3A-A=\left(1+\frac{1}{3}+......+\frac{1}{19683}\right)-\left(\frac{1}{3}+\frac{1}{9}+........+\frac{1}{59049}\right)\)

\(2A=1-\frac{1}{59049}\)

\(2A=\frac{59048}{59049}\)

\(A=\frac{59048}{59049}:2\)

\(A=\frac{59048}{118098}\)

5 tháng 8 2016

\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=1-\frac{1}{729}\)

\(\Rightarrow2A=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

5 tháng 8 2016

\(=\frac{364}{729}\)

12 tháng 6 2015

Gọi tong trên là A

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)

\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)

\(2A=1-\frac{1}{2187}\)

\(2A=\frac{2186}{2187}\)

\(A=\frac{2186}{2187}:2\)

\(A=\frac{1093}{2187}\)

Vậy tổng A = \(\frac{1093}{2187}\)

12 tháng 6 2015

\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)

     \(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)

=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)

<=> 2y = 3- 1/2187

=> y = \(\frac{3-\frac{1}{2187}}{2}\)

13 tháng 5 2017

\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)

=\(\frac{3}{1.2}+\frac{3}{2.4}+\frac{3}{4.8}+\frac{3}{8.16}+\frac{3}{16.32}\)

=\(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{4}+\frac{3}{4}-\frac{3}{8}+\frac{3}{8}-\frac{3}{16}+\frac{3}{16}-\frac{3}{36}\)

=\(\frac{3}{1}-\frac{3}{36}\)=\(\frac{35}{12}\)

28 tháng 6 2017

a)=768/512+192/512+48/512+12/512+3/512

=768+192+48+12+3/512

=1023/512 

b)=405/81+135/81+45/81+15/81+5/81

=405+135+45+15+5/81

=595/81

c)=256/192+64/192+16/192+4/192+1/192

=256+64+16+4+1/192

=341/192

22 tháng 6 2017

dễ mk nhìn là biết

22 tháng 6 2017

Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))

2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)

A = \(\frac{728}{729}:2=\frac{364}{729}\)

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

24 tháng 6 2017

a, Gọi biểu thức đó là A

Ta có :

A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

A x 3 = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{729}\)

A x 3 = \(1+A-\frac{1}{729}\)

A x 3 = \(\frac{728}{729}+A\)

A x 2 + A = \(\frac{728}{729}+A\)

A x 2 = \(\frac{728}{729}\)(bỏ A ở cả 2 vế)

A = \(\frac{728}{729}\div2=\frac{364}{729}\)

Đáp án = \(\frac{364}{729}\)

b, Phần này mình nghĩ là bạn sai đề rồi. Phải là \(\frac{45\times16-17}{45\times15+28}\)

23 tháng 6 2015

1, \(\frac{1}{2}-\left(6\frac{5}{9}+x-\frac{117}{8}\right):\left(12\frac{1}{9}\right)=0\)

   \(\left(\frac{6.9+5}{9}+x-\frac{117}{8}\right):\frac{12.9+1}{9}=\frac{1}{2}\)

 ( . là nhân nha) 

    \(\left(\frac{59}{9}-\frac{117}{8}+x\right):\frac{109}{9}=\frac{1}{2}\)

    \(\frac{59}{9}-\frac{117}{8}+x=\frac{1}{2}\cdot\frac{109}{9}\)

    \(\frac{59}{9}-\frac{117}{8}+x=\frac{109}{18}\)

   \(x=\frac{109}{18}-\frac{59}{9}+\frac{117}{8}\)

\(x=\frac{113}{8}\)

23 tháng 6 2015

\(\left(y+\frac{1}{3}\right)+\left(y+\frac{2}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)

   \(y+\frac{1}{3}+y+\frac{2}{9}+y+\frac{1}{27}+y+\frac{1}{81}=\frac{56}{81}\)

\(4y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)

\(4y+\frac{49}{81}=\frac{56}{81}\)

\(4y=\frac{7}{81}\)

y      =  7/81:4

y       = 7/324