Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2012 - ( 304 + 2012 ) + ( 2013 + 304 )
= 2012 - 304 - 2012 + 2013 + 304
= 2012 + ( - 304 ) + ( - 2012 ) + 2013 + 304
= [ 2012 + ( - 2012 ) ] + [ ( - 304 ) + 304 ] + 2013
= 0 + 0 + 2013
= 2013
b) \(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(3^2.2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{3^{24}.2^{12}.5^{12}.2^9.3^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{3^{27}.5^{12}.2^{21}}\)
\(=\frac{3}{5^2}=\frac{3}{25}\)
a) 2012 - ( 304 + 2012 ) + (2013 + 304 )
= 2012 - 304 +2012 + 2013 + 304
= ( 2012 - 2012 ) + ( 304 + 304 ) + 2013
= 0 + 608 + 2013
= 2621
Chờ một chút để minh suy nghĩ
2012-304-2012+2013+304
=(2012-2012)+(304-304)+2013
=0+0+2013
=2013
20112-(304+2012)+(2013+304)
=20112-304-2012+2013+304
=20112+(-2012+2013)+(-304+304)
=20112+1+0=20113
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{\left(3^2\right)^{14}.25^5.\left(2^3\right)^7}{2^{12}.\left(3^2\right)^{12}.\left(25^2\right)^3.\left(2^3\right)^3.3^3}=\)\(\frac{3^{28}.25^5.2^{21}}{2^{12}.2^9.3^{24}.3^3.25^6}=\frac{3^{28}.25^5.2^{21}}{2^{21}.3^{27}.25^6}\)\(=\frac{3}{25}\)
Ta có: 2011+2012/2012+2013
=(2011/2012+2013)+(2012/2012+2013)
Vì 2011/2012>2011/2012+2013và 2012/2013>2012/2012+2013
Suy ra:2011/2012+2012/2013>(2011/2012+2013)+(2012/2012+2013)
hay A>b
Vậy A>B
Ta có:\(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2013}{2011+2012+2013}\)
MÀ:\(\frac{2010}{2011+2012+2013}< \frac{2010}{2011}\)
\(\frac{2011}{2011+2012+2013}< \frac{2011}{2012}\)
\(\frac{2012}{2011+2012+2013}< \frac{2012}{2013}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)
2010/2011+2012+2013>2010+2011+2012/2011+2012+2013
2011/2011+2012+2013>2010+2011+2012/2011+2012+2013
2012/2011+2012+2013>2010+2011+2012/2011+2012+2013
suy ra:2010/2011+2011/2012+2012/2013>2010+2011+2012/2011+2012+2013
\(\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}-2012}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2013}{1}-1\right)+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4024}{2012}-1\right)}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
Ủng hộ mk nha ^_-
\(2012M=\frac{2012^{2013}}{2013^{2013}}=\frac{2012}{2013}\)
=>\(M=\frac{2012}{2013}:2012=\frac{1}{2013}\)
\(2012N=\frac{2012\left(2012^{2012}+2012\right)}{2013^{2013}+2013}=\frac{2012^{2013}+2012^2}{2013^{2013}+2013}\)
=>\(N=\frac{2012+2012^2}{2013+2013}:2012=\frac{4050156}{4026}:2012=\frac{1}{2}\)
=>\(\frac{1}{2013}< \frac{1}{2}\) (vì phân số nào có mẫu bé hơn thì phân số đó lớn hơn)
=> M < N
2012 - 304 + 2012 + 2013 + 304
= ( 2012 - 2012 ) + ( 304 - 304 ) + 2013
= 2013 + 0 + 0
= 2013
2012 - ( 304 + 2012 ) + ( 2013 + 304 )
= 2012 - 304 - 2012 + 2013 + 304
= 2012 + ( - 304 ) + ( - 2012 ) + 2013 + 304
= [ 2012 + ( - 2012 ) ] + [ ( - 304 ) + 304 ] + 2013
= 0 + 0 + 2013
= 2013
~hok tốt ~